PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Laboratory study of the effects of terrestrial coastal forests on the absorption of solitary wave force

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the beach protection techniques is using natural methods based on the coastal ecosystem. Studies show the reducing effect of forest covers on wave destruction intensity in different areas. However, it is not yet well understood how various densities of terrestrial coastal forest (TCF) affect the wave attenuation and reduce their strength. Studying the impact of various forest parameters, such as density, distance, and arrangement type on the wave force attenuation, this research measures the wave forces directly. TCF model was installed in a knife edge flume, which equipped with a load cell and an acoustic Doppler velocimeter. The experiments were performed in two staggered and parallel arrangements consisting of different densities from 12 to 273 stems per unit area. Based on obtained results, TCF had significant effects on the wave force absorption. An increase in the number of trees (density) increased TCF resistance force and the absorbed wave force. In its best, the TCF could absorb the wave force 3.76 times more than the no-TCF case. It could reduce the wave height by up to 81% at the highest density and maximum wave height. The absorbed wave force and drag coefficient rose as the number of rows of trees opposing the flow decreased and the intervals between trees were shortened. Increasing tree density from 12 to 273 stems per unit area increased the drag coefficient by the average of 61.82% for parallel and staggered arrangements, which means an average increase of 9.7% for each TCF row.
Czasopismo
Rocznik
Strony
449--465
Opis fizyczny
Bibliogr. 69 poz.
Twórcy
  • Department of Water Science Engineering, Shahrekord University, Shahrekord, Iran
  • Department of Water Science Engineering, Shahrekord University, Shahrekord, Iran
redaktor
  • Department of Water Science Engineering, Shahrekord University, Shahrekord, Iran
Bibliografia
  • 1. Akgul MA, Yilmazer D, Oguz E, Kabdasli MS, Yagci O (2013) The effect of an emergent vegetation (ie Phragmistes Australis) on wave attenuation and wave kinematics. J Coast Res 65:147-152. https://doi.org/10.2112/SI65-026.1
  • 2. Augustin LN, Irish JL, Lynett P (2009) Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation. Coast Eng 56(3):332-340. https://doi.org/10.1016/j. coastaleng.2008.09.004
  • 3. Baptist M.J. (2005) Modelling floodplain biogeomorphology. Delft University of Technology, Faculty of Civil Engineering and Geosciences, Section Hydraulic Engineering, Delft, pp 213
  • 4. Bradley K, Houser C (2009) Relative velocity of seagrass blades: implications for wave attenuation in low-energy environments. J Geophys Res. https://doi.org/10.1029/2007JF000951
  • 5. Buckingham E (1914) On physically similar systems; illustrations of the use of dimensional equations. Phys Rev 4(4):345-376. https:// doi.org/10.1103/PhysRev.4.345
  • 6. Cao H, Feng W, Hu Z, Suzuki T, Stive MJ (2015) Numerical modeling of vegetation-induced dissipation using an extended mild-slope equation. Ocean Eng 110:258-269. https://doi.org/10.1016/j. oceaneng.2015.09.057
  • 7. Cavallaro L, Re CL, Paratore G, Viviano A, Foti E (2011) Response of Posidonia oceanica to wave motion in shallow-waters-preliminary experimental results. Coast Eng Proc 32:49-49
  • 8. Chen M, Lou S, Liu S, Ma G, Liu H, Zhong G, Zhang H (2020) Velocity and turbulence affected by submerged rigid vegetation under waves, currents and combined wave-current flows. Coast Eng 159:103727. https://doi.org/10.1016/j.coastaleng.2020.103727
  • 9. Dalrymple RA, Kirby JT, Hwang PA (1984) Wave diffraction due to areas of energy dissipation. J Waterw Port Coast Ocean Eng 110(1):67-79. https://doi.org/10.1061/(ASCE)0733-950X(1984) 110:1(67)
  • 10. Dias JA (2004) A história da evoluęao do litoral portuguěs nos últi-mos vinte milénios. Tavares, AA, Tavares, MJF & Cardoso, JL, Evoluęao Geohistórica do Litoral Portuguěs e Fenómenos Cor-relativos: Geologia, História, Arqueologia e Climatologia, pp. 157-170
  • 11. Esteban M, Roubos JJ, Iimura K, Salet JT, Hofland B, Bricker J, Ishii H, Hamano G, Takabatake T, Shibayama T (2020) Effect of bed roughness on tsunami bore propagation and overtopping. Coast Eng 157:103539. https://doi.org/10.1016/j.coastaleng.2019. 103539
  • 12. Fathi-Moghadam M, Davoudi L, Motamedi-Nezhad A (2018) Modeling of solitary breaking wave force absorption by coastal trees.
  • 13. Ocean Eng 169:87-98. https://doi.Org/10.1016/j.oceaneng.2018. 09.021
  • 14. Foster NM, Hudson MD, Bray S, Nicholls RJ (2013) Intertidal mudflat and saltmarsh conservation and sustainable use in the UK: a review. J Environ Manage 126:96-104. https://doi.org/10.1016/j. jenvman.2013.04.015
  • 15. Gaertner-Mazouni N, De Wit R (2012) Exploring new issues for coastal lagoons monitoring and management. Estuar Coast Shelf Sci 114:1-6. https://doi.org/10.1016/j.ecss.2012.07.008
  • 16. Ghanbari-Adivi E, Ehteram M, Farrokhi A, Sheikh Khozani Z (2022) Combining radial basis function neural network models and inclusive multiple models for predicting suspended sediment loads. Water Resour Manage 36(11):4313-4342
  • 17. Gonęalves SC, Anastácio PM, Marques JC (2013) Talitrid and Tylid crustaceans bioecology as a tool to monitor and assess sandy beaches’ ecological quality condition. Ecol Ind 29:549-557. https://doi.org/10.1016/j.ecolind.2013.01.035
  • 18. Grilli AR, Westcott G, Grilli ST, Spaulding ML, Shi F, Kirby JT (2020) Assessing coastal hazard from extreme storms with a phase resolving wave model: case study of Narragansett, RI, USA. Coast Eng 160:103735. https://doi.org/10.1016/j.coastaleng.2020. 103735
  • 19. Heller V (2011) Scale effects in physical hydraulic engineering models. J Hydraul Res 49(3):293-306. https://doi.org/10.1080/00221686. 2011.578914
  • 20. Hiraishi T, Harada K (2003) Greenbelt tsunami prevention in South Pacific region. Report Port Airport Res Inst 42:1-23
  • 21. Hsiao SC, Lin TC (2010) Tsunami-like solitary waves impinging and overtopping an impermeable seawall: experiment and RANS modeling. Coast Eng 57(1):1-18
  • 22. Huang Z, Yao Y, Sim SY, Yao Y (2011) Interaction of solitary waves with emergent, rigid vegetation. Ocean Eng 38(10):1080-1088. https://doi.org/10.1016/j.oceaneng.2011.03.003
  • 23. Husrin S, Strusińska A, Oumeraci H (2012) Experimental study on tsunami attenuation by mangrove forest. Earth, Planets Space 64(10):973-989. https://doi.org/10.5047/eps.2011.11.008
  • 24. Irtem E, Gedik N, Kabdasli MS, Yasa NE (2009) Coastal forest effects on tsunami run-up heights. Ocean Eng 36(3-4):313-320
  • 25. Jalil-Masir H, Fattahi R, Ghanbari-Adivi E, Asadi-Aghbolaghi M (2021) Effects of different forest cover configurations on reducing the solitary wave-induced total sediment transport in coastal areas: an experimental study. J ElsevierOcean Eng 235(1):109350. https://doi.org/10.1016/j.oceaneng.2021.109350
  • 26. Jalil-Masir H, Fattahi R, Ghanbari-Adivi E et al (2022) An inclusive multiple model for predicting total sediment transport rate in the presence of coastal vegetation cover based on optimized kernel extreme learning models. Environ Sci Pollut Res. https://doi.org/ 10.1007/s11356-022-20472-y
  • 27. Jamieson PD, Porter JR, Wilson DR (1991) A test of the computer simulation model ARC-WHEAT1 on wheat crops grown in New Zealand. Field Crop Res 27:337-350
  • 28. Knutson PL, Brochu RA, Seelig WN, Inskeep M (1982) Wave damping in Spartina alterniflora marshes. Wetlands 2(1):87-104. https:// doi.org/10.1007/BF03160548
  • 29. Leewis L, van Bodegom PM, Rozema J, Janssen GM (2012) Does beach nourishment have long-term effects on intertidal macroinvertebrate species abundance? Estuar Coast Shelf Sci 113:172181. https://doi.org/10.1016/j.ecss.2012.07.021
  • 30. Leonardi N, Carnacina I, Donatelli C, Ganju NK, Plater AJ, Schuerch M, Temmerman S (2018) Dynamic interactions between coastal storms and salt marshes: a review. Geomorphology 301:92-107. https://doi.org/10.1016/j.geomorph.2017.11.001
  • 31. Lima SF, Neves CF, Rosauro NML (2007) Damping of gravity waves by fields of flexible vegetation. Coast Eng 2006(5):491-503. https://doi.org/10.1142/9789812709554_0043
  • 32. Lou S, Chen M, Ma G, Liu S, Zhong G (2018) Laboratory study of the effect of vertically varying vegetation density on waves, currents and wave-current interactions. Appl Ocean Res 79:74-87. https:// doi.org/10.1016/j.apor.2018.07.012
  • 33. Lövstedt CB, Larson M (2010) Wave damping in reed: Field measurements and mathematical modeling. J Hydraul Eng 136(4):222-233. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000167
  • 34. Martins MC, Neto CS, Costa JC (2013) The meaning of mainland Portugal beaches and dunes’ psammophilic plant communities: a contribution to tourism management and nature conservation. J Coast Conserv 17(3):279-299. https://doi.org/10.1007/ s11852-013-0232-9
  • 35. Mascarenhas A, Jayakumar S (2008) An environmental perspective of the post-tsunami scenario along the coast of Tamil Nadu, India: Role of sand dunes and forests. J Environ Manage 89(1):24-34. https://doi.org/10.1016/j.jenvman.2007.01.053
  • 36. Maza M, Lara JL, Losada IJ (2015) Tsunami wave interaction with mangrove forests: a 3-D numerical approach. Coast Eng 98:33-54. https://doi.org/10.1016/j.coastaleng.2015.01.002
  • 37. Mazda Y, Magi M, Ikeda Y, Kurokawa T, Asano T (2006) Wave reduction in a mangrove forest dominated by Sonneratia sp. Wetlands Ecol Manage 14(4):365-378. https://doi.org/10.1007/ s11273-005-5388-0
  • 38. Mendez FJ, Losada IJ (2004) An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coast Eng 51(2):103-118. https://doi.org/10.1016/j. coastaleng.2003.11.003
  • 39. Möller I, Spencer T (2002) Wave dissipation over macro-tidal saltmarshes: effects of marsh edge typology and vegetation change. J Coast Res 36:506-521. https://doi.org/10.2112/1551-5036-36. sp1.506
  • 40. Möller I, Spencer T, French JR, Leggett DJ, Dixon M (1999) Wave transformation over salt marshes: a field and numerical modelling study from North Norfolk, England. Estuar Coast Shelf Sci 49(3):411-426. https://doi.org/10.1006/ecss.1999.0509
  • 41. Möller I, Kudella M, Rupprecht F, Spencer T, Paul M, Van Wesenbeeck BK, Wolters G, Jensen K, Bouma TJ, Miranda-Lange M, Schimmels S (2014) Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geosci 7(10):727-731
  • 42. Morison JR, Johnson JW, Schaaf SA (1950) The force exerted by surface waves on piles. J Petrol Technol 2(05):149-154. https://doi. org/10.2118/950149-G
  • 43. Morris RL, Konlechner TM, Ghisalberti M, Swearer SE (2018) From grey to green: efficacy of eco-engineering solutions for naturebased coastal defence. Glob Change Biol 24(5):1827-1842
  • 44. Mu H, Yu X, Fu S, Yu B, Liu Y, Zhang G (2019) Effect of stem basal cover on the sediment transport capacity of overland flows. Geoderma 337:384-393. https://doi.org/10.1016/j.geoderma.2018. 09.055
  • 45. Nanko K, Suzuki S, Noguchi H, Ishida Y, Levia DF, Ogura A, Hagino H, Matsumoto H, Takimoto H, Sakamoto T (2019) Mechanical properties of Japanese black pine (Pinus thunbergii Parl.) planted on coastal sand dunes: resistance to uprooting and stem breakage by tsunamis. Wood Sci Technol 53(2):469-489. https://doi.org/ 10.1007/s00226-019-01078-z
  • 46. Nardin W, Edmonds DA, Fagherazzi S (2016) Influence of vegetation on spatial patterns of sediment deposition in deltaic islands during flood. Adv Water Resour 93:236-248. https://doi.org/10.1016/j. advwatres.2016.01.001
  • 47. Nguyen TP, Parnell KE (2017) Gradual expansion of mangrove areas as an ecological solution for stabilizing a severely eroded mangrove dominated muddy coast. Ecol Eng 107:239-243. https://doi.org/ 10.1016/j.ecoleng.2017.07.038
  • 48. Nobre AM, Ferreira JG (2009) Integration of ecosystem-based tools to support coastal zone management. J Coast Res 5:1676-1680
  • 49. Nordstrom KF (2014) Living with shore protection structures: a review. Estuar Coast Shelf Sci 150:11-23. https://doi.Org/10.1016/j.ecss. 2013.11.003
  • 50. Quartel S, Kroon A, Augustinus PGEF, Van Santen P, Tri NH (2007) Wave attenuation in coastal mangroves in the Red River Delta Vietnam. J Asian Earth Sci 29(4):576-584. https://doi.org/10. 1016/j.jseaes.2006.05.008
  • 51. Rajendra IA, Sumariati DAR (2018) The role of coconut plants in relation to disaster management in the tropical coastal regions. MATEC Web Conf 229:01012. https://doi.org/10.1051/matec conf/201822901012
  • 52. Ratnasooriya AHR, Samarawickrama SP, Hettiarachchi SSL, Bandara RPSS, Tanaka N (2008) Mitigation of tsunami inundation by coastal vegetation. J Inst Eng pp 13-19 Sri Lanka. http://dl.lib. mrt.ac.lk/handle/123/11919
  • 53. Shafiei S, Melville BW, Shamseldin AY (2016) Experimental investigation of tsunami bore impact force and pressure on a square prism. Coast Eng 110:1-16
  • 54. Sinitsyn AO, Guegan E, Shabanova N, Kokin O, Ogorodov S (2020) Fifty four years of coastal erosion and hydrometeorological parameters in the Varandey region Barents Sea. Coast Eng 157:103610. https://doi.org/10.1016/j.coastaleng.2019.103610
  • 55. Sorensen RM (2006) Coastal water level fluctuations. Basic Coast Eng. https://doi.org/10.1007/0-387-23333-4_5
  • 56. Sundar V, Murali K, Noarayanan L (2011) Effect of vegetation on run-up and wall pressures due to cnoidal waves. J Hydraul Res 49(4):562-567. https://doi.org/10.1080/00221686.2010.542615
  • 57. Suzuki T, Hu Z, Kumada K, Phan LK, Zijlema M (2019) Non-hydrostatic modeling of drag, inertia and porous effects in wave propagation over dense vegetation fields. Coast Eng 149:49-64. https:// doi.org/10.1016/j.coastaleng.2019.03.011
  • 58. Temmerman S, Meire P, Bouma TJ, Herman PM, Ysebaert T, De Vriend HJ (2013) Ecosystem-based coastal defence in the face of global change. Nature 504(7478):79-83. https://doi.org/10.1038/ nature12859
  • 59. Toloui M, Abraham A, Hong J (2019) Experimental investigation of turbulent flow over surfaces of rigid and flexible roughness. Exp Thermal Fluid Sci 101:263-275. https://doi.org/10.1016/j.expth ermflusci.2018.10.026
  • 60. Torita H, Igarashi Y, Tanaka N (2022) Effective management of Japanese black pine (Pinus thunbergii Parlat.) coastal forests considering tsunami mitigation. J Environ Manag 311:114754. https://doi. org/10.1016/j.jenvman.2022.114754
  • 61. Tschirky P, Hall K, Turcke D (2001) Wave attenuation by emergent wetland vegetation. Coast Eng 2000:865-877. https://doi.org/10. 1061/40549(276)67
  • 62. Türker U, Yagci O, Kabda§li MS (2006) Analysis of coastal damage of a beach profile under the protection of emergent vegetation. Ocean Eng 33(5-6):810-828. https://doi.org/10.1016/j.oceaneng. 2005.04.019
  • 63. Van Veelen TJ, Fairchild TP, Reeve DE, Karunarathna H (2020) Experimental study on vegetation flexibility as control parameter for wave damping and velocity structure. Coast Eng 157:103648. https://doi.org/10.1016/j.coastaleng.2020.103648
  • 64. Wamsley TV, Cialone MA, Smith JM, Ebersole BA, Grzegorzewski AS (2009) Influence of landscape restoration and degradation on storm surge and waves in southern Louisiana. Nat Hazards 51(1):207-224. https://doi.org/10.1007/s11069-009-9378-z
  • 65. Wang Y, Yin Z, Liu Y (2019) Numerical study of solitary wave interaction with a vegetated platform. Ocean Eng 192:106561. https:// doi.org/10.1016/j.oceaneng.2019.106561
  • 66. Winterwerp JC, Albers T, Anthony EJ, Friess DA, Mancheňo AG, Moseley K, Muhari A, Naipal S, Noordermeer J, Oost A, Saeng-supavanich C (2020) Managing erosion of mangrove-mud coasts with permeable dams-lessons learned. Ecol Eng 158:106078. https://doi.org/10.1016/j.ecoleng.2020.106078
  • 67. Yin Z, Yang X, Xu Y, Ding M, Lu H (2017) Experimental wave attenuation study over flexible plants on a submerged slope. J Ocean Univ China 16(6):1009-1017. https://doi.org/10.1007/ s11802-017-3298-4
  • 68. Zhang M, Hao Z, Zhang Y, Wu W (2013) Numerical simulation of solitary and random wave propagation through vegetation based on VOF method. Acta Oceanol Sin 32(7):38-46. https://doi.org/ 10.1007/s13131-013-0330-4
  • 69. Zinke P, Olsen NRB, Bogen J (2011) Three-dimensional numerical modelling of levee depositions in a Scandinavian freshwater delta. Geomorphology 129(3-4):320-333. https://doi.org/10.1016/j. geomorph.2011.02.027
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd399130-1b20-4caa-8fba-2a65a2a597f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.