Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Different from a conventional aircraft, an investigation on system identification and control design has been carried out on a small fixed‐wing unmanned aerial vehicle (UAV) with segmented ailerons. The multiple aileron setup is configured as a multi‐input and single‐output system, and each segment is modeled as a control input. Experiments are conducted in the wind tunnel to determine the frequency responses of the system and the corresponding transfer functions. Multiple PID controllers are designed and implemented in a cascaded form for each control surface. Furthermore, a heuristic switching control strategy is implemented for the aircraft where the multiple aileron segments perform as a single aileron pair in a normal flight condition and adapt to multi‐segment control when encountering severe turbulence or significant angle reference changes. Experimental results reveal that although each control surface can stabilize the aircraft, the proposed control strategy by combining the multiple actuation surfaces reduces the mean squared errors for the roll angle up to 38 percent in the highly turbulent en vironment providing superior disturbance rejection properties.
Słowa kluczowe
Rocznik
Tom
Strony
3--14
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
autor
- RMIT University, Melbourne VIC 3000, www.rmit.edu.au
autor
- RMIT University, Melbourne VIC 3000, www.rmit.edu.au
autor
- RMIT University, Melbourne VIC 3000, www.rmit.edu.au
autor
- RMIT University, Melbourne VIC 3000, www.rmit.edu.au
Bibliografia
- [1] R. Beard, D. Kingston, M. Quigley, D. Snyder, R. Christiansen, W. Johnson, T. McLain, and M. Goodrich, “Autonomous Vehicle Technologies for Small Fixed‑Wing UAVs”, Journal of Aerospace Computing, Information, and Communication, vol. 2, no. 1, 2005, 92–108, 10.2514/1.8371.
- [2] M. Elbanhawi, A. Mohamed, R. Clothier, J. Palmer, M. Simic, and S. Watkins, “Enabling technologies for autonomous MAV operations”, Progress in Aerospace Sciences, vol. 91, 2017, 27–52,10.1016/j.paerosci.2017.03.002.
- [3] J. Sun, J. Tang, and S. Lao, “Collision Avoidance for Cooperative UAVs With Optimized Artificial Potential Field Algorithm”, IEEE Access, vol. 5, 2017, 18382–18390, 10.1109/ACCESS.2017.2746752.
- [4] J. N. Yasin, S. A. S. Mohamed, M.‑H. Haghbayan, J. Heikkonen, H. Tenhunen, and J. Plosila,“Unmanned Aerial Vehicles (UAVs): Collision Avoidance Systems and Approaches”,IEEE Access, vol. 8, 2020, 105139–105155, 10.1109/ACCESS.2020.3000064.
- [5] J. Tang, M. A. Piera, and T. Guasch, “Coloured Petri net‑based traffic collision avoidance system encounter model for the analysis of potential induced collisions”, Transportation Research Part C: Emerging Technologies, vol. 67, 2016, 357–377, 10.1016/j.trc.2016.03.001.
- [6] S. K. Khan, U. Naseem, A. Sattar, N. Waheed, A. Mir, A. Qazi, and M. Ismail, “UAV‑aided 5G Network in Suburban, Urban, Dense Urban, and Highrise Urban Environments”.In: 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 2020, 1–4,10.1109/NCA51143.2020.9306710.
- [7] S. Watkins, A. Mohamed, A. Fisher, R. Clothier, R. Carrese, and D. F. Fletcher, “Towards Autonomous MAV Soaring in Cities: CFD Simulation,EFD Measurement and Flight Trials”, International Journal of Micro Air Vehicles, vol. 7, no. 4, 2015, 441–448, 10.1260/1756‑8293.7.4.441.
- [8] C. White, E. Lim, S. Watkins, A. Mohamed, and M. Thompson, “A feasibility study of micro air vehicles soaring tall buildings”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 103, 2012, 41 – 49, 10.1016/j.jweia.2012.02.012.
- [9] A. Mohamed, K. Massey, S. Watkins, and R. Clothier, “The attitude control of fixed‑wing MAVS in turbulent environments”, Progress in Aerospace Sciences, vol. 66, 2014, 37–48, 10.1016/j.paerosci.2013.12.003.
- [10] A. Mohamed, R. Clothier, S. Watkins, R. Sabatini, and M. Abdulrahim, “Fixed‑Wing MAV Attitude Stability in Atmospheric Turbulence PART 1: Suitability of Conventional Sensors”, Progress in Aerospace Sciences, vol. 70, 2014, 69–82, 10.1016/j.paerosci.2014.06.001.
- [11] A. Mohamed, S. Watkins, R. Clothier, M. Abdulrahim, K. Massey, and R. Sabatini, “Fixed‑wing MAV attitude stability in atmospheric turbulence—Part 2: Investigating biologically‑inspired sensors”, Progress in Aerospace Sciences, vol. 71, 2014, 1–13, 10.1016/j.paerosci.2014.06.002.
- [12] A. Mohamed, M. Abdulrahim, S. Watkins, and R. Clothier, “Development and Flight Testing of a Turbulence Mitigation System for Micro Air Vehicles.”, J. Field Robotics, vol. 33, no. 5, 2016, 639–660, 10.1002/rob.21626.
- [13] J. H. Brown and R. F. Porter. “Evaluation of the gust‑alleviation characteristics and handling qualities of a free‑wing aircraft”. Technical Report NASA‑CR‑1523, April 1970.
- [14] M. Abdulrahim, “Flight Dynamics and Control of an Aircraft with Segmented Control Surfaces”. In: 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2004, 10.2514/6.2004‑128.
- [15] M. Abdulrahim and R. Lind, “Investigating Segmented Trailing‑Edge Surfaces for Full Authority Control of a UAV”. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit, Austin, Texas, 2003, 10.2514/6.2003‑5312.
- [16] H. Boussalis, K. Valavanis, D. Guillaume, F. Pena, E. U. Diaz, and J. Alvarenga, “Control of a simulated wing structure with multiple segmented control surfaces”. In: 21st Mediterranean Conference on Control and Automation, 2013, 501–506, 10.1109/MED.2013.6608768.
- [17] A. Zhao, D. He, and D. Wen, “Structural design and experimental verification of a novel split aileron ing”, Aerospace Science and Technology, vol. 98, 2020, 105635, 10.1016/j.ast.2019.105635.
- [18] M. Wu, Z. Shi, T. Xiao, and H. Ang, “Energy optimization and investigation for Z‑shaped suntracking morphing‑wing solar‑powered UAV”, Aerospace Science and Technology, vol. 91, 2019, 1–11, 10.1016/j.ast.2019.05.013.
- [19] D. Grant, M. Abdulrahim, and R. Lind, “Flight Dynamics of a Morphing Aircraft Utilizing Independent Multiple‑Joint Wing Sweep”, International Journal of Micro Air Vehicles, vol. 2, 2010, 91 –106, 10.1260/1756‑8293.2.2.91.
- [20] P. G. Ifju, R. Albertani, B. K. Stanford, D. J. Claxton, and M. J. Sytsma, “Flexible‑Wing Micro Air Vehicles”. In: S. V. Shkarayev, P. G. Ifju, J. C. Kellogg, and T. J. Mueller, eds., Introduction to the Design of Fixed‑Wing Micro Air Vehicles Including Three Case Studies, Reston, VA, 2007, 185–240, 10.2514/4.862106.
- [21] P. Ifju, M. Waszak, and L. Jenkins, “Stability and control properties of an aeroelastic fixed wing micro aerial vehicle”. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2001,10.2514/6.2001‑4005.
- [22] A. Oduyela and N. Slegers, “Gust Mitigation of Micro Air Vehicles Using Passive Articulated Wings”, The Scientific World Journal, vol. 2014, 2014, 1–10, 10.1155/2014/598523.
- [23] R. M. Martinez. “Design and analysis of the control and stability of a blended wing body air‑craft”. Master’s thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, 2014.
- [24] F. Pena, B. L. Martins, and W. L. Richards. “Active In‑Flight Load Redistribution Utilizing Fiber‑Optic Shape Sensing and Multiple Control Surfaces”. Technical Report NASA/TM‑2018‑219741, February 2018.
- [25] J. T. Rogers and K. J. R. Manning. “Wing load alleviation system using tabbed allerons”, October 1984. US Patent 4,479,620.
- [26] G. E. Lewis. “Maneuver load alleviation system”, January 1989. US Patent 4,796,192.
- [27] C. Lelaie. “A380: Development of the Flight Controls. Part 1”. https://safetyfirst.airbus. com/app/themes/mh_newsdesk/documents/archives/a380-development-of-theflight-controls.pdf, 2012. Accessed on: 2022‑04‑21.
- [28] C. Lelaie. “A380: Development of the Flight Controls. Part 2”. https://safetyfirst.airbus.com/app/themes/mh_newsdesk/documents/archives/a380-development-of-theflight-controls2.pdf, 2012. Accessed on:2022‑04‑21.
- [29] A. Sattar, L. Wang, A. Mohamed, A. Panta,and A. Fisher, “System Identification of Fixed‑wing UAV with Multi‑segment Control Surfaces”. In: 2019 Australian New Zealand Control Conference (ANZCC), 2019, 76–81, 10.1109/AN‑ZCC47194.2019.8945775.
- [30] E. I. Moreira and P. M. Shiroma, “Design of ractional PID controller in time‑domain for a fixed‑wing unmanned aerial vehicle”. In: 2017 Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), Curitiba, 2017, 1–6, 10.1109/SBR‑LARS‑R.2017.8215335.
- [31] P. Poksawat, L. Wang, and A. Mohamed, “Automatic tuning of attitude control system for fixed‑wing unmanned aerial vehicles”, IET Control Theory and Applications, vol. 10, no. 17, 2016, 2233–2242, 10.1049/iet‑cta.2016.0236.
- [32] J. Rubio Hervas, M. Reyhanoglu, H. Tang, and E. Kayacan, “Nonlinear control of fixed‑wing UAVs in presence of stochastic winds”, Communications in Nonlinear Science and Numerical Simulation, vol. 33, 2016, 57–69, 10.1016/j.cnsns.2015.08.026.
- [33] M. H. Choi, B. Shirinzadeh, and R. Porter, “System Identification‑Based Sliding Mode Control for Small‑Scaled Autonomous Aerial Vehicles With Unknown Aerodynamics Derivatives”, IEEE/ASME Transactions on Mechatronics, vol. 21, no. 6, 2016, 2944–2952, 10.1109/TMECH.2016.2578311.
- [34] Y. Kang and J. K. Hedrick, “Linear Tracking for a Fixed‑Wing UAV Using Nonlinear Model Predictive Control”, IEEE Transactions on Control Systems Technology, vol. 17, no. 5, 2009, 1202–210, 10.1109/TCST.2008.2004878.
- [35] V. Lam, A. Sattar, L. Wang, and M. Lazar, “Fast Hildreth‑based Model Predictive Control of Roll Angle for a Fixed‑Wing UAV”, IFAC‑PapersOnLine, vol. 53, no. 2, 2020, 5757–5763, 10.1016/j.ifacol.2020.12.1608.
- [36] J. F. Gomez and M. Jamshidi, “Fuzzy logic control of a fixed‑wing unmanned aerial vehicle”. In: 2010 World Automation Congress, 2010, 1–8.
- [37] H. A. de Oliveira and P. F. Ferreira Rosa, “Genetic neuro‑fuzzy approach for unmanned fixed wing attitude control”. In: 2017 International Conference on Military Technologies (ICMT), 2017, 485–492, 10.1109/MILTECHS.2017.7988808.
- [38] S. Zhao, X. Wang, W. Kong, D. Zhang, and L. Shen, “A novel backstepping control for attitude of fixed‑wing UAVs with input disturbance”. In: 2015 34th Chinese Control Conference (CCC), 2015, 693–697, 10.1109/ChiCC.2015.7259719.
- [39] InvenSense Inc. “Embedded Motion Driver v5.1.1 APIs Specification. SW‑EMD‑REL‑5.1.1”.http://www.digikey.com/Site/Global/Layouts/DownloadPdf.ashx?pdfUrl=4012F20DDE8F4095B10E31923C2F7EF2, 2012.Accessed on: 2022‑04‑21.
- [40] S. Ravi. “The influence of turbulence on a flat plate aerofoil at Reynolds numbers relevant to MAVs”. https://researchrepository.rmit.edu.au/esploro/outputs/doctoral/The-influence-of-turbulence-ona/9921861600501341, 2011. Accessed on:2022‑04‑21.
- [41] A. Mohamed, S. Watkins, R. Clothier, and M. Abdulrahim, “Influence of Turbulence on MAV Roll Perturbations”, International Journal of Micro Air Vehicles, vol. 6, no. 3, 2014, 175–190, 10.1260/1756‑8293.6.3.175.
- [42] R. W. Beard and T. W. McLain, Small Unmanned Aircraft: Theory and Practice, Princeton, N.J., 2012.
- [43] S. A. Salman, A. G. Sreenatha, and J.‑Y. Choi, “Attitude Dynamics Identification of Unmanned Aircraft Vehicle”, International Journal of Control,Automation, and Systems, vol. 4, no. 6, 2006, 782–787.
- [44] A. Sattar, L. Wang, A. Mohamed, and A. Fisher,“Roll Rate Controller Design of Small Fixed Wing UAV using Relay with Embedded Integrator”. In: 2020 Australian and New Zealand Control Conference (ANZCC), 2020, 149–153, 10.1109/AN‑ZCC50923.2020.9318355.
- [45] L. Wang, From Plant Data to Process Control: Ideas for Process Identification and PID Design, CRC PRESS, 2019.
- [46] E. C. Levy, “Complex‑curve fitting”, IRE Transactions on Automatic Control, vol. AC‑4, no. 1, 1959, 37–43, 10.1109/TAC.1959.6429401.
- [47] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Society for Industrial and Applied Mathematics, 1996, 10.1137/1.9781611971200.
- [48] L. Wang, T. J. D. Barnes, and W. R. Cluett, “New frequency‑domain design method for PID controllers”, IEE Proceedings ‑ Control Theory and Applications, vol. 142, no. 4, 1995, 265–271, 10.1049/ip‑cta:19951859.
- [49] L. Wang, PID control system design and automatic tuning using MATLAB/Simulink, Wiley: Hoboken, NJ Chichester, West Sussex, 2020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd34ab73-41f6-42b9-9816-16b0b9a99104