Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
CESD 2024 : Conference on Earth Sciences : November 11th, 2024, Ho Chi Minh City, Vietnam
Języki publikacji
Abstrakty
Marine pollution caused by plastic waste is a worldwide concern. Of which, plastic waste originating from Polyethylene (PE) accounts for the highest proportion. This study focuses on evaluating the biodegradation ability of PE plastic of some bacteria belonging to the genus Bacillus isolated from marine sediments collected in Khanh Hoa province, Vietnam. Four bacterial strains including: C1.2, C3.4, C13.1, C17.1 reduced the weight of PE substrate after 45 days of culture (compared to the initial) by (%): 4.5 ± 0.058d , 3.6 ± 0.100c , 6.4 ± 0.100b , 6.7 ± 0.058a , respectively, completely equivalent to the results of determining laccase enzyme activity (U/ml): 974.0 ±3.61d , 649.3±3.06c , 791.7±1.53b , 1,206.0±3.61a . Scanning electron microscopy (SEM) images showed that bacteria created distinct cracks and dents on the surface of plastic pellets. The bacteria were then studied for a number of biological characteristics including colony and cell morphology, pH, temperature, salinity and PE substrate concentration limits, and identified through 16S rRNA gene sequencing. The four bacterial strains C1.2, C3.4, C13.1, C17.1 were closely related to species of the genus Bacillus including: Bacillus cereus, Bacillus amyloliquefaciens, Bacillus safensis, Bacillus megaterium. This study could be a premise for further studies on the treatment of saline PE plastic waste using marine bacteria.
Czasopismo
Rocznik
Tom
Strony
art. no. 65
Opis fizyczny
Bibliogr. 25 poz., tab., wyukr., zdj.
Twórcy
autor
- Department of Biotechnology, Joint Vietnam - Russia Tropical Science and Technology Research Center, Nguyen Van Huyen Street, Hanoi,Vietnam
- Faculty of Environment and Natural Resources, Nong Lam University, Ho Chi Minh city, Vietnam
autor
- Department of Biotechnology, Joint Vietnam - Russia Tropical Science and Technology Research Center, Nguyen Van Huyen Street, Hanoi,Vietnam
autor
- Center for New Technology Transfer, Joint Vietnam - Russia Tropical Science and Technology Research Center, Phan Van Tri Street, Ho Chi Minh city, Vietnam
autor
- HUTECH Institute of Applied Sciences, HUTECH University, Ho Chi Minh City, Vietnam
autor
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Vietnam
autor
- Institute of Postgraduate Studies, HUTECH University, Ho Chi Minh City, Vietnam
Bibliografia
- 1. Auta H.S., Emenike C.U., Fauziah S.H. (2017). Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation, Environmental Pollution. 1-8. https://doi.org/10.1016/j.envpol.2017.09.043.
- 2. Castillo H., Villafania M. (2024). Bacterial Biodiversity. Encyclopedia of Biodiversity. 2, 793-801. https://doi.org/10.1016/B978-0-12-822562-2.00336-4.
- 3. Cucini C., Leo C., Vitale M. (2020). Bacterial and fungal diversity in the gut of polystyrene-fed Alphitobius diaperinus (Insecta: Coleoptera). Anim Gene. https://doi.org/10.1016/j.angen.2020.200109.
- 4. Das M. P. and Kumar S. (2014). An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech. 5, 81–86.
- 5. Dhangdhariya J. H., Dubey S., Trivedi H. B., Pancha I., Bhatt J. K., Dave B. P, Mishra S. (2015). Polyhydroxyalkanoate from marine Bacillus megaterium using CSMCRI's Dry Sea Mix as a novel growth medium. International Journal of Biological Macromolecules. 76, 254-261. https://doi.org/10.1016/j.ijbiomac.2015.02.009.
- 6. Emenike C.U., Agamuthu P., Fauziah S.H. (2016). Blending Bacillus sp. and Rhodococcus sp. for optimal reduction of heavy metals in leachate contaminated soil. Environ. Earth Sci. 75, 26. https://doi.org/10.1007/s12665-015-4805-9.
- 7. Ghatge S., Yang Y., Ahn J-H., Hur H-G. (2020). Biodegradation of polyethylene: a brief review. Appl Biol Chem. 63, 27. https://doi.org/10.1186/s13765-020-00511-3.
- 8. Harshvardhan K., Jha B. (2013). Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar. Pollut. Bull. 77 (1), 100-106.
- 9. Kang B..R, Bin K.S., Song H.A., Lee T.K. (2019). Accelerating the biodegradation of high-density polyethylene (Hdpe) using bjerkandera adusta tbb-03 and lignocellulose substrates. Microorganisms. https://doi.org/10.3390/microorganisms7090304.
- 10. Kannahi M., Sudha P. (2013). Screening of polyethylene and plastic degrading microbes from Muthupet mangrove soil. J. Chem. Pharm. Res. 5 (8), 122 -127.
- 11. Kumar R., Kaur J., Jain S., Kumar A. (2016). Optimization of laccase production from Aspergillus flavus by design of experiment technique: Partial purification and characterization. Journal of Genetic Engineering and Biotechnology. 14, 125-131. https://doi.org/10.1016/j.jgeb.2016.05.006.
- 12. Liang Y., Tan Q., Song Q., Li J. (2021). An analysis of the plastic waste trade and management in Asia. Waste Manag. 119, 242–253. https://doi.org/10.1016/j.
- 13. Michail S. (2005), The Mechanism of Action of Probiotics, Wright State University School of Medicine, The Children’s Medical Center, Da ton, Ohio
- 14. Michael T. M., John M. M., Paul V. D., David P. C. Brock Biology of Microorganisms. Benjamin Cummings. 12th Edition.
- 15. Mohan A. J., Sekhar V. C., Bhaskar T., Nampoothiri K. (2016). Microbial assisted High Impact Polystyrene (HIPS) degradation. Bioresource Technology. 213, 204-207. https://doi.org/10.1016/j.biortech.2016.03.021.
- 16. Montazer Z., Habibi Najafi M. B., Levin D. B. (2020). Challenges with verifying microbial degradation of polyethylene. Polymers 12(1), 123.
- 17. Muthukumarasamy N. P., Jackson B., Raj A. J., Sevanan M. (2015). Production of Extracellular Laccase from Bacillus subtilis MTCC 2414 Using Agroresidues as a Potential Substrate. Biochemistry Research International. http://dx.doi.org/10.1155/2015/765190.
- 18. Plastics Europe (2022). Plastic - The Facts 2022.
- 19. Rafey A., Siddiqui F.Z. (2021). A review of Plastic Waste Management in India challenges and opportunities. Int. J. Environ. Anal. Chem. 103, 3971–3987. https://doi.org/10.1080/03067319.2021.1917560.
- 20. Ramkumar M., Balasubramani K., Santosh M., Nagarajan R. (2022). The plastisphere: A morphometric genetic classification of plastic pollutants in the natural environment. Gondwana Research. 108, 4-12. https://doi.org/10.1016/j.gr.2021.07.004.
- 21. Report of the Ministry of Natural Resources and Environment at the Forum "Reducing ocean plastic waste: Responsibility and action of youth 2024“.
- 22. Srikanth M., Sandeep T. S. R. S., Sucharitha K., Godi S. (2022). Biodegradation of plastic polymers by fungi: a brief review. Bioresources and Bioprocessing. 9, 42-51. https://doi.org/10.1186/s40643-022-00532-4
- 23. Weisburg W. G., Barns S. M., Pelletier D. A. (1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 173(2), 697–703. https://doi.org/10.1128/jb.173.2.697-703.
- 24. Yadav D. and Kudanga T. (2023). Bacterial Laccases. A volume in Progress in Biochemistry and Biotechnology.
- 25. Yao Z., Seong H., Jang Y. (2022). Degradation of low density polyethylene by Bacillus species. Applied Biological Chemistry. 65:84. https://doi.org/10.1186/s13765-022-00753-3.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd344d2a-1691-4196-a0f6-cf336dd5627f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.