PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shaping changes in the ecological status of watercourses within barrages with hydropower schemes : literature review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydropower use of watercourses has tangible consequences for the environment, society and economy. Based on a literature review and their own research, the authors present current data on changes in the ecological status of waters within run-of-river and reservoir hydropower plants, i.e. changes in biological elements (benthic macroinvertebrates, plankton, ichthyofauna, macrophytes), as well as hydromorphological and physicochemical changes. Previous researchers have noted that the impact of hydropower use of rivers on ecological status of those rivers is extensive, consisting of, among others, changes in species structure and populations of macrophytes, benthic macroinvertebrates, plankton and ichthyofauna (positive as well as negative changes), algal blooms due to increased turbidity, constrained migration of water organisms, changes in temperature within hydroelectric power plants, the phenomenon of supersaturation, eutrophication, changes in hydrological conditions (e.g., increased amplitudes of diurnal water levels and their consequent annual reduction), and increased erosion below the damming and deposition of bottom sediments on the damming barriers. In addition to such changes in ecological status, hydropower use also has a visible impact on socio-economic conditions (e.g., living standards of the population) and the environment (e.g., quality of bottom sediments and biodiversity). The article offers an assessment of the impact of hydropower use of rivers on ecological status (biological, hydromorphological, physicochemical elements and hydrological conditions of such rivers), society, economy and environment; it also proposes a research scheme to assess the impact of hydropower structures.
Rocznik
Strony
78--94
Opis fizyczny
Bibliogr. 188 poz., rys., tab., wykr.
Twórcy
  • Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Poland
  • Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Poland
Bibliografia
  • 1. Aarestrup, K. & Koed, A. (2003). Survival of Migrating Sea Trout (Salmo trutta) and Atlantic Salmon (Salmo salar) Smolts Negotiating Weirs in Small Danish Rivers. Ecology of Freshwater Fish, 12 (3), pp. 169 - 176, DOI: 10.1034/j.1600-0633.2003.00027.x.
  • 2. Abdel-Gawad, S.S. & Mola, H.R.A. (2014). Macrobenthic invertebrates in the main channel of Lake Nasser, Egypt, The Egyptian Journal of Aquatic Research, 40(4), pp. 405-414, DOI: 10.1016/j.ejar.2014.12.002.
  • 3. Agrawal, A.K. & Sharma, M.O. (2012). Greenhouse Gas Emissions from Hydropower Reservoirs. Hydro Nepal Journal of Water Energy and Environment, 11, DOI: 10.3126/hn.v11i0.7159.
  • 4. Algera, D.A., Rytwinski, T., Taylor, J.J., Bennett, J.R., Smokorowski, K.E., Harrison, P.M., Clarke, K.D., Enders, E.C., Power, M., Bevelhimer & Cooke, S.J. (2020). What are the relative risks of mortality and injury for fish during downstream passage at hydroelectric dams in temperate regions? A systematic review. Environmental Evidence, 9(1), DOI: 10.1186/s13750-020-0184-0.
  • 5. Alho, C.J.R. (2011). Environmental Effects of Hydropower Reservoirs on Wild Mammals and Freshwater Turtles in Amazonia: A Review, Oecologia Australis, 15(3), pp. 593-604, DOI: 10.4257/oeco.2011.1503.11.
  • 6. Aller, J.Y. & Stupakoff, I. (1996). The distribution and seasonal characteristics of benthic communities on the Amazon shelf as indicators of physical processes, Continental Shelf Research, 16 (5-6), pp. 717-751, DOI: 10.1016/0278-4343(96)88778-4.
  • 7. Álvarez, X., Valero, E., de la Torre-Rodriguez, N. & Acuña-Alonso, C. (2020). Influence of Small Hydroelectric Power Stations on River Water Quality, Water, 12, 312, DOI: 10.3390/w12020312.
  • 8. Álvarez-Troncoso, R., Benetti, C.J., Sarr, A.B., Pérez-Bilbao, A. & Garrido, J. (2015). Impacts of hydroelectric power stations on Trichoptera assemblages in four rivers in NW Spain, Limnologica, 53, pp. 35-41, DOI: 10.1016/j.limno.2015.05.001.
  • 9. Anderson, D., Moggridge, H., Shucksmith, J. & Warren, P. (2017). Quantifying the Impact of Water Abstraction for Low Head ‘Run of the River’ Hydropower on Localized River Channel Hydraulics and Benthic Macroinvertebrates, River Research and Applications, 33(2), DOI: 10.1002/rra.2992.
  • 10. Anderson, D., Moggridge, H., Warren, P. & Shucksmith, J. (2014). The impacts of ‘run‐of‐river’ hydropower on the physical and ecological condition of rivers. Water and Environment Journal, 29(2), pp. 268-276, DOI: 10.1111/wej.12101.
  • 11. Armanini. D.G., Idigoras Chaumel, A., Monk, W.A., Marty, J., Smokorowski, K., Power, M. & Baird, D.J. (2014). Benthic macroinvertebrate flow sensitivity as a tool to assess effects of hydropower related ramping activities in streams in Ontario (Canada), Ecological Indicators, 46, pp. 466-476, DOI: 10.1016/j.ecolind.2014.07.018.
  • 12. Auestad, I., Nilsen, Y. & Rydgren, K. (2018). Environmental Restoration in Hydropower Development - Lessons from Norway, Sustainability, 10, 3358, DOI: 10.3390/su10093358.
  • 13. Bakken, T.H., Sundt, H., Ruud, A. & Harby, A. (2012). Development of Small Versus Large Hydropower in Norway- Comparison of Environmental Impacts, Energy Procedia, 20, pp. 185-199, DOI: 10.1016/j.egypro.2012.03.019.
  • 14. Barros, N., Cole, J.J., Tranvik, L.J., Prairie, Y.T., Bastviken, D., Huszar, L.M. & Roland, F. (2011). Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience, 4, pp. 593-596, DOI: 10.1038/ngeo1211.
  • 15. Bartoszek, L., Gruca-Rokosz, R. & Koszelnik, P. (2017). Analysis of the desludging effectiveness of the Cierpisz and Kamionka Reservoirs as an effective method of the eutrophic ecosystems recultivation, Annual Set The Environment Protection, 19, 600-617.
  • 16. Baumgartner, L.J., Marsden, T., Singhanouvong, D., Phonekhampheng, O., Stuart, I.G. & Thorncraft, G. (2012). Using an experimental in situ fishway to provide key design criteria for lateral fish passage in tropical rivers: a case study from the Mekong River, central Lao PDR. River Research and Applications, 28(8), pp. 1217-1229, DOI: 10.1002/RRA.1513.
  • 17. Bejarano, M.D., Sordo-Ward, Á, Alonso, C. & Nilsson, C. (2017). Characterizing effects of hydropower plants on sub-daily flow regimes, Journal of Hydrology, 550, pp. 186-200, DOI: 10.1016/j.jhydrol.2017.04.023.
  • 18. Benejam, L., Saura-Mas, S., Bardina, M., Solà, C., Munné, A. & García‐Berthou, E. (2014). Ecological impacts of small hydropower plants on headwater stream fish: from individual to community effects. Ecology and Freshwater Fish, 25(2), pp. 1-12, DOI: 10.1111/eff.12210.
  • 19. Benitez J.P., Matondo B.N., Dierckx A. & Ovidio M. (2015). An overview of potamodromous fish upstream movements in medium-sized rivers, by means of fish passes monitoring. Aquatic Ecology, 49(4), pp. 481-497, DOI: 10.1007/s10452-015-9541-4.
  • 20. Bilotta, G.S., Burnside, N.G., Gray, J.C. & Orr, H.G. (2017) The Effects of Run-of-River Hydroelectric Power Schemes on Fish Community Composition in Temperate Streams and Rivers, PLoS ONE, 11(5): e0154271, DOI: 10.1371/journal.pone.0154271.
  • 21. Bishkawakarma, M.B. & Støle, H. (2010). Real-time sediment monitoring in hydropower plants, Journal of Hydraulic Research, 2018(2), pp. 282-288, DOI: 10.1080/00221686.2008.9521862.
  • 22. Bogen, J. & Bønsnes, T.E. (2001). The impact of a hydroelectric power plant on the sediment load in downstream water bodies, Svartisen, northern Norway, Science of the Total Environment, 266 (1-3), pp. 273-80, DOI: 10.1016/s0048-9697(01)00650-7.
  • 23. Borja, A. & Elliott, M. (2007). What does “good ecological potential” mean, within the European Water Framework Directive?, Marine Pollution Bulletin, 54(1), pp. 1559-1564, DOI: 10.1016/j.marpolbul.2007.09.002.
  • 24. Borowiak, K., Kanclerz, J., Mleczek, M., Lisiak, M., Drzewiecka, K. (2016). Accumulation of Cd and Pb in water, sediment and two littoral plants (Phragmites australis, Typha angustifolia) of freshwater ecosystem, Archives of Environmental Protection, 42(3), DOI: 10.1515/aep-2016-0032.
  • 25. Botelho, A., Ferreira, P., Lima, F., Pinto, L.M.C. & Sousa, S. (2017). Assessment of the environmental impacts associated with hydropower, Renewable and Sustainable Energy Reviews, 17, pp. 896-904, DOI: 10.1016/j.rser.2016.11.271.
  • 26. Bracken, F. & Lucas, M.C. (2013). Potential Impacts of Small--Scale Hydroelectric Power Generation on Downstream Moving Lampreys, River Research and Applications, 29 (9), pp. 1073-1081, DOI: 10.1002/rra.2596.
  • 27. Branche, E. (2017). The multipurpose water uses of hydropower reservoir: The SHARE concept, Comptes Rendus Physique, 18 (7-8), pp. 469-478, DOI: 10.1016/j.crhy.2017.06.001.
  • 28. Brown, R.S., Colotelo, A.H., Pflugrath, B.C., Boys, C.A., Baumgartner, L.J. & Deng, D. (2014). Understanding barotrauma in fish passing hydro structures: a global strategy for sustainable development of water resources, Fisheries, 39, pp. 108-122, DOI: 10.1080/03632415.2014.883570.
  • 29. Bruno, M.C., Maiolini, B., Carolli, M. & Silveri, L. (2010). Short time-scale impacts of hydropeaking on benthic invertebrates in an Alpine stream (Trentino, Italy), Limnologica, 40(4), pp. 281-290, DOI: 10.1016/j.limno.2009.11.012.
  • 30. Čada, G.F., Coutant, C.C. & Whitney, R.R. (1997). Development of biological criteria for the design of advanced hydropower turbines. EERE Publication and Product Library Department of Energy, Washington, USA.
  • 31. Calder, R.S.D., Schartup, A., Li, M., Valberg, A.P., Balcom, P.H. & Sunderland, E.M. (2016). Future Impacts of Hydroelectric Power Development on Methylmercury Exposures of Canadian Indigenous Communities, Environmental Science and Technology, 50(23), DOI: 10.1021/acs.est.6b04447.
  • 32. Camargo, J.A. (2018). Responses of aquatic macrophytes to anthropogenic pressures: comparison between macrophyte metrics and indices, Environmental Monitoring and Assessment, 190:173, DOI: 10.1007/s10661-018-6549-y.
  • 33. Carballo, R., Cancela, J.J., Iglesias, G., Marin, A., Neira, X.X. & Cuesta, T.S. (2009). WFD Indicators and Definition of the Ecological Status of Rivers, Water Resources Management, 23(11), pp. 2231-2247, DOI: 10.1007/s11269-008-9379-9.
  • 34. Carvalho, L., Mackay, E.B., Cardoso, A.C., Baattrup-Pedersen, A., Birk, S. & Solheim, A.L. (2019). Protecting and restoring Europe’s waters: An analysis of the future development needs of the Water Framework Directive, Science of the Total Environment, 658, pp. 1228-1238, DOI: 10.1016/j.scitotenv.2018.12.255.
  • 35. Cebalho, E.C., Díez, S., Dos Santos Filho, M., Muniz, C.C., Lázaro, W., Malm, O. & Ignácio, A.R.A. (2017). Effects of small hydropower plants on mercury concentrations in fish. Environmental Science and Pollution Research, 24(28), pp. 22709-22716, DOI: 10.1007/s11356-017-9747-1.
  • 36. Chaparro, G., O’Farrell, I. & Thomas, H. (2019). Multi-scale analysis of functional plankton diversity in floodplain wetlands: Effects of river regulation, Science of the Total Environment, 667, pp. 338-347, DOI: 10.1016/j.scitotenv.2019.02.147.
  • 37. Chiogna, G., Majone, B., Paoli, K.C., Diamantini, E., Stella, E., Mallucci, S., Lencioni, V., Zandonai, F. & Bellin, A. (2016). A review of hydrological and chemical stressors in the Adige catchment and its ecological status, Science of the Total Environment, 540, pp. 429-443, DOI: 10.1016/j.scitotenv.2015.06.149.
  • 38. Clarkson, R.W. (2004). Effectiveness of Electrical Fish Barriers Associated with the Central Arizona Project, North American Journal of Fisheries Management, 24(1), pp. 94-105, DOI: 10.1577/M02-146.
  • 39. Clay, C.H. (1995). Design of fishways and other fish facilities, second edition. Lewis Publisher, Boca Raton.
  • 40. Coleman, R.A., Gauffre, B., Pavlova, A., Beheregaray, L.B., Kearns, J., Lyon, J., Sasaki, M., Leblois, R., Sgro, C. & Sunnucks, P. (2018). Artificial barriers prevent genetic recovery of small isolated populations of a low-mobility freshwater fish, Heredity, 120, pp. 515-532, DOI: 10.1038/s41437-017-0008-3.
  • 41. Cortes, R.M.V., Ferreira, M.T., Oliveira, S.V. & Godinho, F. (1998). Contrasting impact of small dams on the macroinvertebrates of two Iberian mountain rivers, Hydrobiologia 389, 51, DOI: 10.1023/A:1003599010415.
  • 42. Coutant, C.C. & Whitney, R.R. (2000). Fish Behavior in Relation to Passage through Hydropower Turbines: A Review, Transactions of the American Fisheries Society, 129:2, pp. 351-380, DOI: 10.1577/1548-8659(2000)129<0351:FBIRTP>2.0.CO,2.
  • 43. Croze, O., Frédérique, B. & Delmouly, L. (2008). Efficiency of a fish lift for returning Atlantic salmon at a large-scale hydroelectric complex in France, Fisheries Management and Ecology, 15 (5-6), DOI: 10.1111/j.1365-2400.2008.00628.x.
  • 44. Da Costa Lobato, T., Hauser-Davis, R.A., de Oliveira, T.F., Maciel, M.C., Tavares, M.R., da Silveira, A.M. & Saraiva, A.C. (2014). Categorization of the trophic status of a hydroelectric power plant reservoir in the Brazilian Amazon by statistical analyses and fuzzy approaches, Science of the Total Environment, 506-607, pp. 613-620, DOI: 10.1016/j.scitotenv.2014.11.032.
  • 45. Dainys, J., Stakėnas, S., Gorfine, H. & Ložys, L. (2017). Mortality of silver eels migrating through different types of hydropower turbines in Lithuania. River Research and Applications, 34(1), pp. 52-59, DOI: 10.1002/rra.3224.
  • 46. De Faria, F.A.M., Davis, A., Severnini, E. & Jaramillo, P. (2017). The local socio-economic impacts of large hydropower plant development in a developing country, Energy Economics, 67, pp. 544-544, DOI: 10.1016/j.eneco.2017.08.025.
  • 47. De Figueroa, J.M.T., López-Rodríguez, M.J., Fenoglio, S., Sánchez-Castillo, P. & Fochetti, R. (2013). Freshwater biodiversity in the rivers of the Mediterranean Basin, Hydrobiologia, 719(1), DOI: 10.1007/s10750-012-1281-z.
  • 48. De Oliveira, D.A., Noguira, M.G. & Perbiche-Neves, G. (2009). Discharge pulses of hydroelectric dams and their effects in the downstream limnological conditions: A case study in a large tropical river (SE Brazil). Lakes & Reservoirs Research & Management, 14(4), pp. 301-314, DOI: 10.1111/j.1440-1770.2009.00414.x.
  • 49. Dębowski, P., Bernaś, P., Skóra, M. & Morzuch, J. (2016), Mortality of silver eel (Anguilla anguilla) migrating downstream through a small hydroelectric plant on the Drawa River in northern Poland, Archives of Polish Fisheries, 24, pp. 69-75, DOI: 10.1515/aopf-2016-0008.
  • 50. Del Tánago, M.G., Gurnell, A., Belletti, B. & de Jalon, D.G. (2015). Indicators of River System Hydromorphological Character and Dynamics: Understanding Current Conditions and Guiding Sustainable River management, Aquatic Sciences, 78(1), DOI: 10.1007/s00027-015-0429-0.
  • 51. Dembowska, E.A. (2009). Phytoplankton species diversity of the Lower Vistula from Wyszogród to Toruń, Oceanological and Hydrobiological Studies, 38(4), pp. 63-74, DOI: 10.2478/v10009-009-0044-2.
  • 52. DeRolph, C.R., Schramm, M.P. & Bevelhimer, M.S. (2016). Predicting environmental mitigation requirements for hydropower projects through the integration of biophysical and socio-political geographies, Science of the Total Environment., 566-567, pp. 888-918, DOI: 10.1016/j.scitotenv.2016.05.099.
  • 53. Dobicki, W. & Polechoński, R. (2003). Relationship between age and heavy metal bioaccumulation by tissues of four fish species inhabiting Wojnowskie Lakes, Acta Sci. Pol. Piscariam 2(1), pp. 27-44.
  • 54. Elbatran, A.H., Abdel-Hamed, M.W., Yaakob, O.B., Ahmed, Y.M. & Ismail, M.A. (2015). Hydro Power and Turbine Systems Reviews, Jurnal Teknologi, 74:5, pp. 83-90, DOI: 10.11113/jt.v74.4646.
  • 55. Erinofiardi Gokhale, P., Date, A., Akbarzadeh, A., Bismatonolo, P., Suryono, A.F., Mainil, A.K. & Nuramal, A. (2017). A Review on Micro Hydropower in Indonesia, Energy Procedia, 110, pp. 316-321, DOI: 10.1016/j.egypro.2017.03.146.
  • 56. European Commission (2020). 2020 climate & energy package. Available online: https://ec.europa.eu/clima/policies/strategies/2020_en (accessed 29 January 2020).
  • 57. Ezcurra, E., Barrios, E., Ezcurra, P., Vanderplank, S., Vidal, O., Villanueva-Almanza, L. & Aburto-Oropeza, O. (2019). A natural experiment reveals the impact of hydroelectric dams on the estuaries of tropical rivers, Science Advances, 5(3), DOI: 10.1126/sciadv.aau9875.
  • 58. Fantin-Cruz, I., Pedrollo, O., Girard, P., Zeilhofer, P. & Hamilton, S.K. (2015). Effects of a diversion hydropower facility on the hydrological regime of the Correntes River, a tributary to the Pantanal floodplain, Brazil, Journal of Hydrology, 531(3), pp. 810-820, DOI: 10.1016/j.jhydrol.2015.10.045.
  • 59. Fantin-Cruz, I., Pedrollo, O., Girard, P., Zeilhofer, P. & Hamilton, S.K. (2016). Changes in river water quality caused by a diversion hydropower dam bordering the Pantanal floodplain, Hydrobiologia, 768(1), pp. 223-238, DOI: 10.1007/s10750-015-2550-4.
  • 60. Faulks, L. K., Gilligan, D. M. & Beheregaray, L. B. (2011). The role of anthropogenic vs. natural in‐stream structures in determining connectivity and genetic diversity in an endangered freshwater fish, Macquarie perch (Macquaria australasica), Evolutionary Applications, 4(4), 589, DOI: 10.1111/J.1752-4571.2011.00183.
  • 61. Fette, M., Weber, C., Peter, A. & Wehrli, B. (2007). Hydropower Production and River Rehabilitation: A Case Study on an Alpine River, Environmental Modeling and Assessment, 12(4), pp. 257-267, DOI: 10.1007/s10666-006-9061-7.
  • 62. Finger, D., Schmid, M. & Wüest, A. (2006). Effects of upstream hydropower operation on riverine particle transport and turbidity in downstream lakes, Water Resources Research, 42(8), DOI: 10.1029/2005WR004751.
  • 63. Finger, D., Schmid, M. & Wüest, A. (2007). Comparing effects of oligotrophication and upstream hydropower dams on plankton and productivity in perialpine lakes, Water Resources Research, W12404(12), DOI: 10.1029/2007WR005868.
  • 64. Florentina, B., Ciocan, G.D., Oprina, G., Baran, G. & Babutanu, C. (2010). Hydropower impact on water quality, Environmental Engineering and Management Journal, 10(11), pp. 1459-1464, DOI: 10.30638/eemj.2010.195.
  • 65. Foulds, W.L. & Lucas, M.C. (2013). Extreme inefficiency of two conventional, technical fishways used by European river lamprey (Lampetra fluviatilis). Ecological Engineering, 58, pp. 423-433, DOI:10.1016/J.ECOLENG.2013.06.038.
  • 66. Franklin, A.E., Haro, A., Castro-Santos, T. & Noreika, J. (2012). Evaluation of Nature-Like and Technical Fishways for the Passage of Alewives at Two Coastal Streams in New England, Transactions of the American Fisheries Society, 141(3):624-637, DOI: 10.1080/00028487.2012.683469.
  • 67. Gagnon, L. & van de Vate, J.F. (1997). Greenhouse gas emissions from hydropower: The state of research in 1996. Energy Policy, 25, pp. 7-13, DOI: 10.1016/S0301-4215(96)00125-5.
  • 68. Goldhammer, T., Bruchert, V., Ferdelman, T. & Zabel, M. (2010). Microbial sequestration of phosphorus in anoxic upwelling sediments, Nature Geoscience, 3(8), pp. 557-561, DOI: 10.1038/ngeo913.
  • 69. Gouskov, A., Reyes, M., Wirthner‐Bitterlin, L. & Vorburger, C. (2016). Fish population genetic structure shaped by hydroelectric power plants in the upper Rhine catchment, Evolutionary Applications, 9(2), pp. 394-408, DOI: 10.1111/eva.12339.
  • 70. Gracey, E.O. & Verones, F. (2016). Impacts from hydropower production on biodiversity in an LCA framework – review and recommendations, The International Journal of Life Cycle Assessment, 21, pp. 412-428, DOI: 10.1007/s11367-016-1039-3.
  • 71. Greimel, F., Schülting, L., Wolfram, G., Bondar-Kunze, E., Auer, S., Zeiringer, B. & Hauer, C. (2018). Hydropeaking Impacts and Mitigation, Riverine Ecosystem Management, DOI: 10.1007/978-3-319-73250-3_5.
  • 72. Hämmerling, M. & Kałuża, T. (2018). Analysis of Fish Migration Potential Through the Seminatural Fish Pass on an Example the Skórka Barrage on the Głomia River, Annual Set the Environment Protection, 20(1), pp. 574-587.
  • 73. Hecht, J. S., Lacombe, G., Arias, M. E., Duc Dang, T. & Piman, T. (2018). Hydropower dams of the Mekong River basin: a review of their hydrological impacts, Journal of Hydrology, DOI: 10.1016/j.jhydrol.2018.10.045.
  • 74. Hirsch, P.E., Eloranta, A.P., Amundsen, P., Brabrand, Å., Charmasson, & Yang, H. (2017). Effects of water level regulation in alpine hydropower reservoirs: an ecosystem perspective with a special emphasis on fish, Hydrobiologia, 794(1), pp. 287-301, DOI: 10.1007/s10750-017-3105-7.
  • 75. Igliński, B. (2019). Hydro energy in Poland: the history, current state, potential, SWOT analysis, environmental aspects, International Journal of Energy and Water Resources, 3, pp. 61-72, DOI: 10.1007/s42108-019-00008-w.
  • 76. Ilić, M., Stevanović, Z. & Vakanjac, V.R. (2016). Environmental aspects and potential impacts of proposed water transfer scheme on sustainable water management in eastern Herzegovina, Environmental Earth Sciences, 75, 521, DOI: 10.1007/s12665-015-5147-3.
  • 77. Jones, P.E., Consuegra, S., Börger, L., Jones J. & de Leaniz, C.G. (2020). Impacts of artificial barriers on the connectivity and dispersal of vascular macrophytes in rivers: A critical review, Freshwater Biology, DOI: 10.1111/fwb.13493.
  • 78. Kasperek R. & Wiatkowski, M. (2008). Field Studies of Fish Pass Operation on Michalice Reservoir. Annual Set The Environment Protection, 10, pp. 613-622. (in Polish)
  • 79. Kasperek, R. & Wiatkowski, M. (2014). Hydropower generation on the Nysa Klodzka River, Ecological Chemistry and Engineering, S, 21, pp. 327-336, DOI: 10.2478/eces-2014-0025.
  • 80. Kelly-Richards, S., Silber-Coats, N., Crootof, A. & Tecklin, Bauer, C. (2017). Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom, Energy Policy, 101, pp. 251-264, DOI: 10.1016/j.enpol.2016.11.035.
  • 81. Kenyon, G.F. (1981). The environmental effects of hydroelectric projects, Canadian Water Resources Journal, 6(3), pp. 309-314, DOI: 10.4296/cwrj0603309.
  • 82. Kjærstad, G., Arnekleiv, J.V., Speed, J.D.M. & Herland, A.K. (2018). Effects of hydropeaking on benthic invertebrate community composition in two central Norwegian rivers, River Research and Applications, 34(3), pp. 218-231, DOI: 10.1002/rra.3241.
  • 83. Klaver, G., van Os, B., Negrel, P. & Petelet-Giraud, E. (2007). Influence of hydropower dams on the composition of the suspended and riverbank sediments in the Danube, Environmental Pollution, 148, pp. 718-728, DOI: 10.1016/j.envpol.2007.01.037.
  • 84. Kobus, S., Glińska-Lewczuk, K., Sidoruk, M. & Skwierawski, A. (2016). Effect of hydrological connectivity on physicochemical properties of bottom sediments of floodplain lakes - A case study of the Lyna river, Northern Poland, Environmental Engineering and Management Journal, 15(6), pp. 1237-1246, DOI: 10.30638/eemj.2016.135.
  • 85. Kougias, I., Aggidis, G., Avellan, F., Deniz, S., Lundin, U. & Theodossiou, N. (2019). Analysis of emerging technologies in the hydropower sector, Renewable and Sustainable Energy Review, 113, 109257, DOI: 10.1016/j.rser.2019.109257.
  • 86. Kuby, M.J., Fagari, W.F., ReVelle, C.S. & Graf, W.L. (2005). A multiobjective optimization model for dam removal: an example trading off salmon passage with hydropower and water storage in the Willamette basin, Advances in Water Resources, 28(8), pp. 845-855, DOI: 10.1016/j.advwatres.2004.12.015.
  • 87. Larinier, M. (2008). Fish passage experience at small-scale hydroelectric power plants in France, Hydrobiologia, 609, pp. 97-108, DOI: 10.1007/s10750-008-9398-9.
  • 88. Larinier, M., Travade, F. & Porcher, J.P. (2002). Fishways: biological basis, design criteria and monitoring, Bulletin Français de la Pêche et de la Pisciculture, 364.
  • 89. Lees, A.C., Peres, C.A., Fearnside, P., Schneider, M. & Zuanon, J. (2016). Hydropower and the future of Amazonian biodiversity, Biodiversity and Conservation, 25(451): 466, DOI: 10.1007/s10531-016-1072-3.
  • 90. Li, J., Dong, S., Liu, S., Yang, Z., Peng, M. & Zhao, C. (2013). Effects of cascading hydropower dams on the composition, biomass and biological integrity of phytoplankton assemblages in the middle Lancang-Mekong River, Ecological Engineering, 60, pp. 316-324, DOI: 10.1016/j.ecoleng.2013.07.029.
  • 91. Linares, M.S., Assis, W., de Castro Solar, R.R., Leitão, R.P., Hughes, R.M. & Callisto, M. (2019). Small hydropower dam alters the taxonomic composition of benthic macroinvertebrate assemblages in a neotropical river, River Research and Applications, 35, pp. 725-735, DOI: 10.1002/rra.3442.
  • 92. Liu, J., Zuo, J., Sun, Z., Zillante, G. & Chen, X. (2013). Sustainability in hydropower development - A case study, Renewable & Sustainable Energy Review, 19, pp. 230-237, DOI: 10.1016/j.rser.2012.11.036.
  • 93. Loga, M., Jeliński, M. & Kotamäki, N. (2018). Dependence of water quality assessment on water sampling frequency - an example of Greater Poland rivers, Archives of Environmental Protection, 44(2), pp. 3-13, DOI: 10.24425/119688.
  • 94. Lucas, M.C. & Frear, P.A. (1997). Effects of a flow-gauging weir on the migratory behaviour of adult barbel, a riverine cyprinid, Journal of Fish Biology, 50(2), pp. 382-396, DOI: 10.1111/j.1095-8649.1997.tb01366.x.
  • 95. Lüderitz, V., Jüpner, R., Müller, S. & Feld, C.K. (2004). Renaturalization of streams and rivers - the special importance of integrated ecological methods in measurement of success. An example from Saxony-Anhalt (Germany), Limnologica, 34(3), pp. 249-263, DOI: 10.1016/S0075-9511(04)80049-5.
  • 96. Ma, L., Zhang, X., Wang, H. & Qi, C. (2018). Characteristics and Practices of Ecological Flow in Rivers with Flow Reductions Due to Water Storage and Hydropower Projects in China, Water, 10, 1091, DOI: 10.3390/w10081091.
  • 97. Ma, Q., Li, R., Feng, J., Lu, J. & Zhou, Q. (2018). Cumulative effects of cascade hydropower stations on total dissolved gas supersaturation, Environmental Science and Pollution Research, 25(14), pp. 13536-13547, DOI: 10.1007/s11356-018-1496-2.
  • 98. Malmqvist, B. & Englund, E. (1996). Effects of hydropower-induced flow perturbations on mayfly (Ephemeroptera) richness and abundance in north Swedish river rapids, Hydrobiologia, 341, pp. 145-158, DOI: 10.1007/BF00018118.
  • 99. Massarutto, A. & Pontoni, F. (2015). Rent seizing and environmental concerns: A parametric valuation of the Italian hydropower sector, Energy Policy, 78, pp. 31-40, DOI: 10.1016/j.enpol.2014.12.016.
  • 100. Mattmann, M., Logar, I. & Brouwer, R. (2016). Hydropower externalities: A meta-analysis, Energy Economics, 57, pp. 66-77, DOI: 10.1016/j.eneco.2016.04.016.
  • 101. McCleave J.D. (2001). Simulation of the impact of dams and fishing weirs on reproductive potential of Silver – Phase American Eels in the Kennebec River Basin, Maine, North American Journal of Fisheries Management, 21, pp. 592-605, DOI: 10.1577/1548-8675(2001)021<0592:SOTIOD>2.0.CO,2.
  • 102. McManamay, R.A., Peoples, B.K., Orth, D.J., Dolloff, C.A. & Matthews, D.C. (2015). Isolating causal pathways between flow and fish in the regulated river hierarchy, Canadian Journal of Fisheries and Aquatic Sciences, 72, pp. 1731-1748, DOI: 10.1139/cjfas-2015-0227.
  • 103. Młyński, D., Operacz, A. & Wałęga, A. (2019). Sensitivity of methods for calculating environmental flows based on hydrological characteristics of watercourses regarding the Hydropower Potential of Rivers, Journal of Cleaner Production, 250:119527, DOI: 10.1016/j.jclepro.2019.119527.
  • 104. Moog, O. (1993). Quantification of daily peak hydropower effects on aquatic fauna and management to minimize environmental impacts. Regulated Rivers: Research & Management, 8 (1-2), DOI: 10.1002/rrr.3450080105.
  • 105. Mueller, M., Pander, J. & Geist, J. (2011). The effects of weirs on structural stream habitat and biological communities, Journal of Applied Ecology, 48, pp. 1450-1461, DOI: 10.1111/j.1365-2664.2011.02035.x.
  • 106. Mueller, M., Pander, J. & Geist, J. (2017). Evaluation of external fish injury caused by hydropower plants based on a novel field-based protocol, Fisheries Management and Ecology, 24(3), pp. 240-255, DOI: 10.1111/fme.12229.
  • 107. Nguyen, T.H.T., Forio, M.A.E., Boets, P., Lock, K., Damanik Ambarita, M.N., Suhareva, N., Everaert, G., Van der Heyden, C., Dominguez-Granda, L.E., Hoang, T.H.T. & Goethals, P. (2018). Threshold Responses of Macroinvertebrate Communities to Stream Velocity in Relation to Hydropower Dam: A Case Study from The Guayas River Basin (Ecuador), Water, 10, 1195, DOI: 10.3390/w10091195.
  • 108. Nguyen-Tien, V., Elliot, R.J.R. & Strobl, E.A. (2018). Hydropower generation, flood control and dam cascades: A national assessment for Vietnam, Journal of Hydrology, 560, pp. 109-126, DOI: 10.1016/j.jhydrol.2018.02.063.
  • 109. Nõges, P., van de Bund, W., Cardoso, A.C., Solimini, A.G. & Heiskanen, A.-S. (2009). Assessment of the ecological status of European surface waters: A work in progress, Hydrobiologia, 633(1), pp. 197-211, DOI: 10.1007/s10750-009-9883-9.
  • 110. Noonan, M.J., Grant, W.A. & Jackson C.D. (2012). A quantitative assessment of fish passage efficiency, Fish and Fisheries, 13(4), 450-463, DOI: 10.1111/j.1467-2979.2011.00445.x.
  • 111. Obolewski, K., Glińska-Lewczuk, K., Jarząb, N., Burandt, P., Kobus, S. & Skrzypczak, A. (2014). Benthic invertebrates in floodplain lakes of a Polish river: Structure and biodiversity analyses in relation to hydrological conditions, Polish Journal of Environmental Studies, 23(5), pp. 1679-1689.
  • 112. Ochs, K., Rivaes, R.P., Ferreira, T. & Egger, G. (2018). Flow Management to Control Excessive Growth of Macrophytes - An Assessment Based on Habitat Suitability Modeling, Frontiers in Plant Science, 9, 356, DOI: 10.3389/fpls.2018.00356.
  • 113. Odeh M. & Orbis A. (1998). Effect of Water Acceleration on Downstream Migratory Behavior and Passage of Atlantic Salmon Smolts and Juvenile American Shad at Surface Bypasses, Transactions of the American Fisheries Society Journal, 127, pp. 118-127, 10.1577/1548-8659(1998)127<0118:EOWAOD>2.0.CO,2.
  • 114. Operacz, A., Wałęga, A., Cupak, A. & Tomaszewska, B. (2018). The comparison of environmental flow assessment - The barrier for investment in Poland or river protection? Journal of Cleaner Production, 193, DOI: 10.1016/j.jclepro.2018.05.098.
  • 115. Padedda, B.M., Sechi, N., Lai, G.G., Mariani, M.A., Pulina, S., Sarria, M., Satta, C.T., Virdis, T., Buscarinu, P. & Lugliè, A. (2017). Consequences of eutrophication in the management of water resources in Mediterranean reservoirs: A case study of Lake Cedrino (Sardinia, Italy), Global Ecology and Conservation, 12, pp. 21-35, DOI: 10.1016/j.jclepro.2018.05.098.
  • 116. Pan, B., Wang, Z., Li, Z., Yu, G., Xu, M., Zhao, N. & Brierley, G. (2013). An exploratory analysis of benthic macroinvertebrates as indicators of the ecological status of the Upper Yellow and Yangtze Rivers, Journal of Geographic Sciences, 23(5): 871-882, DOI: 10.1007/s11442-013-1050-6.
  • 117. Pawłowski, A. (2010). The Role of Environmental Engineering in Introducing Sustainable Development, Ecological Chemistry and Engineering S, 17(3).
  • 118. Perkins, K.J., Andrewartha, J.M., McMinn, A., Cook, S.S. & Hallegraeff, G.M. (2010). Succession and physiological health of freshwater microalgal fouling in a Tasmanian hydropower canal, Biofouling, 26(6), pp. 637-644, DOI: 10.1080/08927014.2010.506610.
  • 119. Peterson, C.G. (1986). Effects of Discharge Reduction on Diatom Colonization below a Large Hydroelectric Dam, Journal of the North American Benthological Society, 5(4), pp. 278-289, DOI: 10.2307/1467480.
  • 120. Pheakdey, H. (2017). Hydropower and local community: A case study of the Kamchay dam, a China-funded hydropower project in Cambodia, Community Development, 48(3), pp. 385-402, DOI: 10.1080/15575330.2017.1304432.
  • 121. Pimenta, A.M., Elbertoni, E.F. & Palma-Silva, C. (2012). Characterization of water quality in a small hydropower plant reservoir in southern Brazil, Lakes & Reservoirs Research & Management, 17(4), DOI: 10.1111/lre.12007.
  • 122. Piper, A.T., Rosewarne, P.J., Wright, R.M. & Kemp, P.S. (2018). The impact of an Archimedes screw hydropower turbine on fish migration in a lowland river, Ecological Engineering, 118, pp. 31-42, DOI: 10.1016/j.ecoleng.2018.04.009.
  • 123. Pleizer, N., Nelson, C., Cooke, S. & Brauner, C.J. (2019). Understanding gas bubble trauma in an era of hydropower expansion: How do fish compensate at depth?. Canadian Journal of Fisheries and Aquatic Sciences, 77(3), DOI: 10.1139/cjfas-2019-0243.
  • 124. Poikane, S., Zampoukas, N., Borja, A., Davies, S.P., van de Bund, W. & Birk, S. (2014). Intercalibration of aquatic ecological assessment methods in the European Union: Lessons learned and way forward, Environmental Science & Policy, 44, pp. 237-246, DOI: 10.1016/j.envsci.2014.08.006.
  • 125. Pokorny, P., Pokorny, J., Dobicki, W., Senze, M. & Kowalska-Górska, M. (2015). Bioaccumulations of heavy metals in submerged macrophytes in the mountain river Biała Lądecka (Poland, Sudety Mts.), Archives of Environmental Protection, 41(4), pp. 81-90, DOI: 10.1515/aep-2015-0042/.
  • 126. Puzdrowska, M. & Heese, T. (2019). Experimental Studies on the Spatial Structure and Distribution of Flow Velocities in Bolt Fishways, Journal of Ecological Engineering, 20(11), DOI: 10.12911/22998993/113044.
  • 127. Rajfur, M., Kłos, A. & Wacławek, M. (2011), Algae utilization in assessment of the large Turawa Lake (Poland) pollution with heavy metals, Journal of Environmental Science and Health Part A, 46(12), pp. 1401-1408, DOI:10.1080/10934529.2011.606717.
  • 128. Rangel, L.M., Silva, L.H.S., Rosa, P., Roland, F. & Huszar, V.L.M. (2012). Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs, Hydrobiologia, 693(1), pp. 13-28, DOI: 10.1007/s10750-012-1083-3.
  • 129. Reckendorfer, W., Schmalfuß, R., Baumgartner, C., Habersack, H., Hohensinner, S., Jungwirth, M. & Schiemer, F. (2005). The Integrated River Engineering Project for the free-flowing Danube in the Austrian Alluvial Zone National Park: contradictory goals and mutual solutions, Archiv fur Hydrobiologie, 15 (1-4), pp. 613-630.
  • 130. REN21 (Renewable Energy Policy Network for the 21st Century) (2014), Renewables 2013 - Global Status Report. Available online (access on 18 March 2020): https://www.ren21.net/wpcontent/uploads/2019/05/GSR2013_Full-Report_English.pdf
  • 131. Resende, P.C., Resende, P., Pardal, M.Â., Almeida, S. & Azeiteiro, U.M. (2010). Use of biological indicators to assess water quality of the Ul River (Portugal), Environmental Monitoring and Assessment, 170 (1-4), pp. 535-544, DOI: 10.1007/s10661-009-1255-4.
  • 132. Richmond, M.C., Serkowski, J.A., Ebner, L.L., Sick, M., Brown, R.S. & Carlson, T.J. (2014). Quantifying barotrauma risk to juvenile fish during hydro-turbine passage, Fisheries Research, 154, pp. 152-164, DOI: 10.1016/j.fishres.2014.01.007.
  • 133. Richter, B., Mathews, R., Harrison, D. & Wigington, R. (2003). Ecologically Sustainable Water Management: Managing River Flows for Ecological Integrity, Ecol. Appl, 13(1), pp. 206-224, DOI: 10.1890/1051-0761(2003)013[0206:ESWMMR]2.0.CO,2.
  • 134. Rodgers, E.M., Cramp, R.L., Gordos, M., Weier, A., Fairfull, S., Riches, M. & Franklin, C.E. (2014). Facilitating upstream passage of small-bodied fishes: linking the thermal dependence of swimming ability to culvert design. Marine and Freshwater Research, 65, pp. 710-719, DOI: 10.1071/MF13170.
  • 135. Rodriguez, J.-F. (2012). Hydropower landscapes and tourism development in the Pyrenees, Journal of Alpine Research, 100(2), DOI : 10.4000/rga.1819.
  • 136. Rosik-Dulewska, C., Ciesielczuk, T. & Krysiński, M. (2012). Organic pollutants in groundwater in the former airbase, Archives of Environmental Protection, 38(1), pp. 27-34, DOI: 10.2478/v10265-012-0002-z.
  • 137. Rotilio, M., Marchionni, C. & De Berardinis, P. (2017). The Small-Scale Hydropower Plants in Sites of Environmental Value: An Italian Case Study, Sustainability, 9, 2211, DOI: 10.3390/su9122211.
  • 138. Schülting, L., Feld, C.K. & Wolfram, G. (2016). Effects of hydro- and thermopeaking on benthic macroinvertebrate drift, Science of the Total Environment, 573, DOI: 10.1016/j.scitotenv.2016.08.022.
  • 139. Sharma, A.L. & Thakur, N.S. (2017). Energy situation, current status and resource potential of run of the river (RoR) large hydro power projects in Jammu and Kashmir: India, Renewable and Sustainable Energy Reviews, 78, pp. 233-251. DOI: 10.1016/j.rser.2017.04.087.
  • 140. Silva, A.T., Lucas, M.C., Castro-Santos, T., Katopodis, C., Baumgartner, L.J. & Cooke, S.J. (2018). The future of fish passage science, engineering, and practice, Fish and Fisheries, 19(2), pp. 340-362, DOI: 10.1111/faf.12258.
  • 141. Silverthorn, V.M., Bishop, C.A., Elliott, J.E. & Morrissey, C.A. (2018). An assessment of run-of-river hydroelectric dams on mountain stream ecosystems using the American dipper as an avian indicator, Ecological Indicators, 93, pp. 942-951, DOI: 10.1016/j.ecolind.2018.05.086.
  • 142. Siminov, E.A., Nikitina, O.I & Egidarev, E.G. (2019). Freshwater Ecosystems versus Hydropower Development: Environmental Assessments and Conservation Measures in the Transboundary Amur River Basin, Water, 11, 1570, DOI:10.3390/w11081570.
  • 143. Sinistro, R. (2010). Top-down and bottom-up regulation of planktonic communities in a warm temperate wetland, Journal of Plankton Research, 32(2), pp. 209-220, DOI: 10.1093/plankt/fbp114.
  • 144. Smith, V.H., Tilman, G.D. & Nekola, J.C. (1999). Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems, Environmental Pollution, 100 (1-3), pp. 179-196, DOI: 10.1016/S0269-7491(99)00091-3.
  • 145. Smolar-Žvanut, N. & Mikoš, M. (2014), The impact of flow regulation by hydropower dams on the periphyton community in the Soča River, Slovenia, Hydrological Sciences Journal, 59(5), pp. 1032-1045, DOI: 10.1080/02626667.2013.834339.
  • 146. Soininen, N., Belinskij, A., Vainikka, A. & Huuskonen, H. (2019) Bringing back ecological flows: migratory fish, hydropower and legal maladaptivity in the governance of Finnish rivers, Water International, 44(3), pp. 321-336, DOI: 10.1080/02508060.2019.1542260.
  • 147. Spänhoff, B. (2014). Current status and future prospects of hydropower in Saxony (Germany) compared to trends in Germany, the European Union and the World, Renewable and Sustainable Energy Reviews, 30, pp. 518-525, DOI: 10.1016/j.rser.2013.10.035.
  • 148. Spitale, D., Angeli, N., Lencioni, V., Tolotti, M. & Cantonati, M. (2015). Comparison between natural and impacted Alpine lakes six years after hydropower exploitation has ceased, Biologia, 70(12), DOI: 10.1515/biolog-2015-0185.
  • 149. Staniszewski, R., Jusik, S., Borowiak, K., Bykowski, J. & Dawson, F.H. (2019). Temporal and Spatial Variations of Trophic Status of a Small Lowland River, Polish Journal of Environmental Studies, 28(1), pp. 329-336, DOI: 10.15244/pjoes/79438.
  • 150. Szoszkiewicz, K., Jusik, S., Pietruczuk, K. & Gebler, D. (2020). The Macrophyte Index for Rivers (MIR) as an advantageous approach to running water assessment in local geographical conditions, Water, 12(1), 108, DOI: 10.3390/w12010108.
  • 151. Szoszkiewicz, K., Zbierska, J., Staniszewski, R. & Jusik, S. (2009). The variability of macrophyte metrics used in river monitoring, Oceanological and Hydrolobiological Studies, 38(4), pp. 117-126, DOI: 10.2478/v10009-009-0049-x.
  • 152. Taft E.P. (2000). Fish protection technologies: A status report. Environmental Science & Policy, 3, pp. 349-359, DOI: 10.1016/S1462-9011(00)00038-1.
  • 153. Teppel, A. & Tymiński, T. (2013). Hydraulic research for successful fish migration improvement - “nature-like” fishways, Civil and Environmental Engineering Reports, 10, pp. 125-137.
  • 154. The European Parliament and the Council - EP (2000). Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy.
  • 155. Tockner, K., Schiemer, F. & Ward J.V. (1998). Conservation by restoration: the management concept for a river‐floodplain system on the Danube River in Austria, Aquatic Conservation: Marine and Freshwater Ecosystems, 8(1), pp. 71-86, DOI: 10.1002/(SICI)1099-0755(199801/02)8:1<71::AID-AQC265>3.0.CO,2-D.
  • 156. Tomczyk, P., Wiatkowski, M. & Gruss, Ł. (2019). Application of Macrophytes to the Assessment and Classification of Ecological Status above and below the Barrage with Hydroelectric Buildings. Water, 11(5), 1028, DOI: 10.3390/w11051028.
  • 157. Travade, F., Larinier, M., Subra, S., Gomes, P. & De-Oliveira, E. (2010). Behaviour and passage of European silver eels (Anguilla anguilla) at a small hydropower plant during their downstream migration, Knowledge & Management Aquatic Ecosystems, 398(01), pp. 1-19, DOI: 10.1051/kmae/2010022.
  • 158. Troelstrup, N.H. & Hergenrader, G.L. (1990). Effect of hydropower peaking flow fluctuations on community structure and feeding guilds of invertebrates colonizing artificial substrates in a large impounded river, Hydrobiologia, 199, pp. 217-228, DOI: 10.1007/BF00006354.
  • 159. Tudesque, L., Pool, T.K. & Chevalier, M. (2019) Planktonic diatom community dynamics in a tropical flood-pulse lake: the Tonle Sap (Cambodia), Diatom Research, 34(1), pp. 1-22, DOI: 10.1080/0269249X.2019.1585960.
  • 160. Vaikasas, S., Bastiene, N. & Pliūraitė, V. (2015). Impact of small hydropower plants on physicochemical and biotic environments in flatland riverbeds in Lithuania, Journal of Water Security, 1(1), pp. 1-13. DOI: 10.15544/jws.2015.001.
  • 161. Vaikasas, S., Palaima, K. & Pliūraitė, V. (2013). Influence of hydropower dams on the state of macroinvertebrates assemblages in the Virvyte river, Lithuania, Journal of Environmental Engineering and Landscape Management, 21(4), pp. 305-315, DOI: 10.3846/16486897.2013.796956.
  • 162. Vale, M.M., Cohn-Haft, M., Bergen, S. & Pimm, S.L. (2008). Effects of Future Infrastructure Development on Threat Status and Occurrence of Amazonian Birds, Conservation Biology, 22(4), 1006-1015, DOI: 10.1111/j.1523-1739.2008.00939.x.
  • 163. Valero, E. (2012). Characterization of the Water Quality Status on a Stretch of River Lérez around a Small Hydroelectric Power Station. Water, 4(4), pp. 815-834, DOI: doi.org/10.3390/w4040815.
  • 164. Volpato, G.L., Barreto, R.E., Marcondes, A.L., Moreira, P.S.A. & de Barros Ferreira, M.D. (2009) Fish ladders select fish traits on migration-still a growing problem for natural fish populations, Marine and Freshwater Behaviour and Physiology, 42:5, pp. 307-313, DOI: 10.1080/10236240903299177.
  • 165. Voulvoulis, N., Arpon, K.D. & Giakoumis, T. (2017). The EU Water Framework Directive: From great expectations to problems with implementation, Science of the Total Environment, 575, pp. 358-366, DOI: 10.1016/j.scitotenv.2016.09.228.
  • 166. Vowles, A.S., Karlsson, S.P., Uzunova, E.P. & Kemp, P.S. (2014). The importance of behaviour in predicting the impact of a novel small-scale hydropower device on the survival of downstream moving fish, Ecological Engineering, 69, pp. 151-159, DOI: 10.1016/j.ecoleng.2014.03.089.
  • 167. Vranowský, V. (1997). Impact of the Gabcíkovo hydropower plant operation on planktonic copepods assemblages in the River Danube and its floodplain downstream of Bratislava. Hydrobiologia, 347, pp. 41-49, DOI: 10.1023/A:1002990705205.
  • 168. Vučijak, B., Kupusović, T., Midžić-Kurtagić, S. & Ćerić, A. (2013). Applicability of multicriteria decision aid to sustainable hydropower, Applied Energy, 101, pp. 261-267, DOI: 10.1016/j.apenergy.2012.05.024.
  • 169. Wang, H., Chen, Y., Liu, Z. & Zhu, D. (2016). Effects of the “Run-of-River” Hydro Scheme on Macroinvertebrate Communities and Habitat Conditions in a Mountain River of Northeastern China, Water, 8(1), 31, DOI: 10.3390/w8010031.
  • 170. Welton, J.S., Beaumont, W.R.C. & Clarke, R.T. (2002). The efficacy of air, sound and acoustic bubble screens in deflecting Atlantic salmon, Salmo salar L., smolts in the River Frome, UK, Fisheries Management and Ecology, 9(1), pp. 11-18, DOI: 10.1046/j.1365-2400.2002.00252.x.
  • 171. Wiatkowski, M. & Tomczyk, P. (2018). Comparative Assessment of the Hydromorphological Status of the Rivers Odra, Bystrzyca, and Ślęza Using the RHS, LAWA, QBR, and HEM Methods above and below the Hydropower Plants, Water, 10(7), 855, DOI: 10.3390/w10070855.
  • 172. Wiatkowski, M. & Wiatkowska, B. (2019). Changes in the flow and quality of water in the dam reservoir of the Mała Panew catchment (South Poland) characterized by multidimensional data analysis, Archives of Environmental Protection, 45(1), pp. 26-41, DOI: 10.24425/aep.2019.126339.
  • 173. Wiatkowski, M., Rosik-Dulewska, C. & Kasperek, R. (2015). Inflow of Pollutants to the Bukówka Drinking Water Reservoir from the Transboundary Bóbr River Basin. Annual Set The Environment Protection, 17, pp. 316-336.
  • 174. Wiatkowski, M., Rosik-Dulewska, C. & Tomczyk, P. (2018). Hydropower Structures in the Natura 2000 Site on the River Radew: an Analysis in the Context of Sustainable Water Management, Annual Set The Environment Protection, 19, pp. 65-80.
  • 175. Wiatkowski, M., Rosik-Dulewska, C., Kuczewski, K. & Kasperek, R. (2013). Water Quality Assessment of Włodzienin Reservoir in the First Year of Its Operation. Annual Set The Environment Protection, 15(3), pp. 2666-2682. (in Polish)
  • 176. Williams, J. G., Armstrong, G., Katopodis, C., Larinier, M. & Travade, F. (2012). Thinking like a fish: a key ingredient for development of effective fish passage facilities at river obstructions, River Research and Applications, 28, pp. 407-417, DOI: 10.1002/RRA.1551.
  • 177. Winemiller, K.O., McIntyre, L., Castello, E., Fluet-Chouinard, T., Giarrizzo, S., & Sáenz, L. (2016). Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong, Science, 351(6269), pp. 1006-1015, DOI: 10.1111/j.1523-1739.2008.00939.x.
  • 178. Witt, A., Stewart, K. & Hadjerioua, B. (2017). Predicting Total Dissolved Gas Travel Time in Hydropower Reservoirs, Journal of Environmental Engineering, 143(12):06017011, DOI: 10.1061/(ASCE)EE.1943-7870.0001281.
  • 179. Wu, J-H. & Ma, F. (2018). Air entrainment of hydraulic jump aeration basin, Journal of Hydrodynamics, 30(5), pp. 962-965, DOI: 10.1007/s42241-018-0088-4.
  • 180. Wu, N., Tang, T., Zhou, S., Jia, X., Li, D., Liu, R. & Cai, Q. (2009). Changes in benthic algal communities following construction of a run-of-river dam, Journal of the North American Benthological Society, 28(1), 69-79, DOI: 10.1899/08-047.1.
  • 181. Wyżga, B., Zawiejska, J., Radecki-Pawlik, A. & Hajdukiewicz, H. (2012). Environmental change, hydromorphological reference conditions and the restoration of Polish Carpathian rivers, Earth Surface Processes and Landforms, 37(11), pp. 1213-1226, DOI: 10.1002/esp.3273.
  • 182. Xiaocheng, F., Tao, T., Wanxiang, J., Fengqing, L., Naicheng, W., Shuchan, Z. & Qinghua, C. (2008). Impacts of small hydropower plants on macroinvertebrate communities, Acta Ecologica Sinica, 28(1), pp. 45-52, DOI: 10.1016/S1872-2032(08)60019-0.
  • 183. Xue, S., Wang, Y., Liang, R., Li, K. & Li, R. (2019). Effects of Total Dissolved Gas Supersaturation in Fish of Different Sizes and Species, International Journal of Environmental Research and Public Health, 16(13): 2444, DOI: 10.3390/ijerph16132444.
  • 184. Zaharia, L., Ioana-Toroimac, G., Cocoş, O., Ghiţă, F.A. & Mailat, E. (2016). Urbanization effects on the river systems in the Bucharest City region (Romania), Ecosystem Health and Sustainability, 2(11), pp. 1-19, DOI: 10.1002/ehs2.1247.
  • 185. Zdankus, N., Vaikasas, S. & Sabas, G. (2008) Impact of a hydropower plant on the downstream reach of a river, Journal of Environmental Engineering and Landscape Management, 16:3, pp. 128-134, DOI: 10.3846/1648-6897.2008.16.128-134.
  • 186. Zębek, E. & Szymańska, U. (2014). Gastropods and periphytic algae relationships in the vicinity of a small hydroelectric plant on the Pasłęka River in northeast Poland, Archives of Polish Fisheries, 22, pp. 69-80, DOI: 10.2478/aopf-2014-0007.
  • 187. Zhou, S., Tang, T., Wu, N., Fu, X., Jiang, W., Li, F. & Cai, Q. (2009). Impacts of cascaded small hydropower plants on microzooplankton in Xiangxi River, China, Acta Ecologica Sinica, 29, pp. 62-68, DOI: 10.1016/j.chnaes.2009.04.008.
  • 188. Ziv, G., Baran, E., Nam, S., Rodriguez-Iturbe, I. & Levis, S.A. (2011). Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin, Proceedings of the National Academy of Sciences of the United States of America, 109(15), DOI: 10.1073/pnas.1201423109.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd2fac67-0354-4b99-99ed-0565312b98fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.