PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computationally efficient method for determining the most important electrical parameters of axial field permanent magnet machine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes a numerically efficient method for determining the electrical parameters of axial field permanent magnet machine (AFPM). The presented method aims to accurately determine the back EMF waveform and self-inductance coefficients, while maintaining possibly low computational complexity, which is crucial in case of incorporation of the method in numerical optimization procedure of AFPM construction. The described algorithm is based on 2D FEM with several simplifications. The obtained results have been compared with full 3D FEA conducted with Ansys/Maxwell software, and confirmed by measurements. The result shows that presented method ensures satisfactory accuracy as well as computational time performance.
Rocznik
Strony
947--959
Opis fizyczny
Bibliogr. 23 poz., rys., wykr., tab.
Twórcy
autor
  • Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
  • Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
  • [1] N. Radwan-Praglowska, D. Borkowski, and T. Węgiel, “Model of coreless axial flux permanent magnet generator”, Electrical Machines SME 18‒21 June 2017, IEEE Explore, 27 July, (2017).
  • [2] C. Gu, W. Wu, and K. Shao, “Magnetic field analysis and optimal design of DC permanent magnet coreless disc machine”, IEEE Trans. Magn. 30 (5), 3668‒3671, 1994.
  • [3] S. Piasecki, R. Szmurlo, J. Rabkowski, and M. Jasinski, “Dedicated system for design, analysis and optimization of AC-DC converters”, Bull. Pol. Ac.: Tech. 64 (4), 2016.
  • [4] F. Caricchi, F. Crescimbini, A.D. Napoli, and E. Santini, “Optimal CAD-CAE design of axial flux permanent magnet motors”, in Proc. ICEM'92, pp. 637‒641. Paris, France, 1992.
  • [5] M. J. Kamper, R.-J. Wang, and F.G. Rossouw, “Analysis and performance of axial flux permanent magnet machine with aircored non-overlapping concentrated stator windings”, IEEE Transactions on Industry Applications 44 (5), (2008).
  • [6] M. Kamper, F.S. van der Merwe, and S. Wiliamson, “Direct finite element design optimisation of the cageless reluctance synchronous machine”, IEEE Transactions on Energy Conversion 11 (3), September (1996).
  • [7] S. Berhausen and S. Paszek, “Use of the finite element method for parameter estimation of the circuit model of a high power synchronous generator”, Bull. Pol. Ac.: Tech. 63 (3), 575‒582, (2015).
  • [8] R.-J. Wang, M. J. Kamper, K. Van der Westhuizen, and J.F. Gieras “Optimal design of a coreless stator axial flux permanent magnet machine”, IEEE Transactions on Magnetics 41 (1), (2005).
  • [9] A. Mlot, M. Lukaniszyn, and M. Korkosz “Influence of an endwinding size on proximity losses in a high-speed PM synchronous motor”, Selected Problems of Electrical Engineering and Electronics, 2015.
  • [10] D. Vanoost, H. De Gersem, J. Peuteman, G. Gielen, and D. Pissort, “Two dimensional magnetic finite- element simulation for devices with a radial symmetry”, IEEE Transactions On Magnetics 50 (5), 2014.
  • [11] D. Engwirda, MESH2D: Delaunay-based mesh generation in MATLAB, 2017.
  • [12] P.P. Silvester and R.L. Ferrari, Finite Elements for Electrical Engineers, 3rd Edition, 1996.
  • [13] J.M. Jin, The Finite Element Method in Electromagnetics, Wiley – IEEE 3rd Edition, 2014.
  • [14] J. Li and Y.-T. Chen, Computational Partial Differential Equations Using Matlab, Springer, September (2010).
  • [15] M.N.O. Sadiku, Numerical Techniques in Electromagnetics with MATLAB, 3rd Edition, 2009.
  • [16] Y. Saad, “GMRES: A generalized minimal residual algorithm for solving non symmetric linear systems”, SIAM J. Sci. Stat. Comput. 7, 856‒869, (1986).
  • [17] R.-J. Wang and M.J. Kamper, “Calculation of Eddy Current Loss in Axial Field Permanent-Magnet Machine With Coreless Stator”, IEEE Transactions on Energy Conversion 19 (3), (2004).
  • [18] Y.-P. Yang, Ch.-H. Lee, and P.-Ch. Hung, “Multiobjective optimal design of an axial-flux permanent-magnet wheel motor for electric scooters”,vol. 8 (1), 1‒12, 2014.
  • [19] J.R. Bumby, R. Martin, M.A. Mueller, E. Spooner, N.L. Brown, and B.J. Chalmers, “Electromagnetic design of axial-flux permanent magnet machines”, IEEE Electric Power Applications 151 (2), 2004.
  • [20] G. Cvetkovski and L. Petkovska, “Efficiency Improvement of Axial Flux PM Motor Using Particle Swarm Optimisation”, Przegląd Elektrotechniczny, ISSN 0033‒2097, r. 89 nr 2b/2013.
  • [21] G. Cvetkovski, L. Petkovska, and S. Gair, “Genetic Algorithm Applied in Optimal Design of PM Disc Motor Using Specific Power as Objective”, Computational Methods for Electrical Devices Design, SCI 327, pp. 229‒246, Springer-Verlag Berlin Heidelberg 2010.
  • [22] M. Gwozdzik, M. Krystkowiak, C. Jedrzejczak, A. Gulczynski, and D. Matecki, “Generator with modulated magnetic flux for wind turbines”, Bull. Pol. Ac.: Tech. 65 (4), 469‒478, (2017).
  • [23] A. Moradewicz and M. Kazmierkowski, “High efficiency contactless energy transfer system with power electronic resonant converter”, Bull. Pol. Ac.: Tech. 57 (4), 2010.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd1e2856-0ddd-44f7-8844-ff5997024100
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.