PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strain rate effect on the mechanical properties of thermoplastic polyolefin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modern industries, including those in construction, increasingly uses various types of polymer materials, which should be characterized by good mechanical properties. In this work, the effect of strain rate (10, 20, and 50 mm/min) on the tensile and properties of three polymers (high-density polyethylene (HDPE), polypropylene (PP), and polyvinylchloride (PVC)) was studied. A twin-screw extruder was used for the preparation of samples. In order to study the influence of strain rate, tensile strength was used. Mechanical property results show that the tensile properties, tensile strength, and elastic modulus increased with the increase in the strain rate, while elongation at the break point decreased.
Rocznik
Tom
Strony
209--216
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
Bibliografia
  • 1. Balaha, M.M., Badawy, A.A.M. & Hashish, M. (2007) Effect of using ground tire rubber as fine aggregate on the behaviour of concrete mixes. Indian Journal of Engineering and Materials Sciences, 14, 427-435.
  • 2. Deviprasad Varma, P.R., Sreejith, P.S. & George, K.E. (2010) Studies on the fracture behaviour of polymer blends with special reference to PP/HDPE and PS/HIPS blends. Cochin University of Science & Technology.
  • 3. Elgharbawy, A.S. & Ali, R.M. (2022) A comprehensive review of the polyolefin composites and their properties. Heliyon, 8, 09932.
  • 4. Enfedaque, A., Alberti, M.G., Gálvez, J.C., Rivera M. & Simón-Talero, J.M. (2018) Can polyolefin fibre reinforced concrete improve the sustainability of a flyover bridge? Sustainability, 10, 4583.
  • 5. Eqra, R. & Moghim, M.H. (2016) Effect of strain rate on the fracture behaviour of epoxy-graphene nanocomposite. Bulletin of Materials Science, 39, 5, DOI: 10.1007/s12034-016-1257-0.
  • 6. Gesoglu M., Güneyisi E., Hansu O., Etli S. & Alhassan M. (2017) Mechanical and fracture characteristics of self-compacting concretes containing different percentage of plastic waste powder. Construction and Building Materials, 140, 562-569.
  • 7. Helbrych, P. (2019) Recycling of sulfur polymers derived from the purification process of copper and other non-ferrous metals in concrete composites. Construction of Optimized Energy Potential, 8, 1, 131-136, DOI: 10.17512/bozpe.2019.1.14.
  • 8. Jacob, G.C., Starbuck, J.M., Fellers, J.F., Simunovic, S. & Boeman, R.G. (2004) Strain rate effects on the mechanical properties of polymer composite materials. Journal of Applied Polymer Science, 94, 1, 296-301, DOI: 10.1002/app.20901.
  • 9. Jaques, N.G., Silva, I.D., da Cruz Barbosa Neto, M., Ries, A., Canedo, E.L. & Wellen, R.M. (2018) Effect of heat cycling on melting and crystallization of PHB/TiO2 compounds. Polimeros, 28(2), 161-168, DOI: 10.1590/0104-1428.12416.
  • 10. Islam, J. Md., Meherier, S. Md. & Rakinul Islam, A.K.M., (2016) Effects of waste PET as coarse aggregate on the fresh and harden properties of concrete. Construction and Building Materials, 125, 946-951.
  • 11. Kantesh Balani, R.N., Verma, V. & Agarwal A. (2015) Physical Thermal and Mechanical Properties of Polymers, in Biosurfaces: A Materials Science and Engineering Perspective. First Edit. John Wiley & Sons, 329, 329-344.
  • 12. Khaloo, Ali R., Dehestani, M. & Rahmatabadi, P. (2008) Mechanical properties of concrete containing a high volume of tire-rubber particles. Waste Manage., 28, 2472-2482.
  • 13. Lamri, A., Shirinbayan, M., Pereira, M., Truffault, L., Fitoussi, J., Lamouri, S., Bakir, F. & Tcharkhtchi, A. (2020) Effects of strain rate and temperature on the mechanical behavior of high-density polyethylene. Journal of Applied Polymer Science, 137, 23, 1-11, DOI: 10.1002/app.48778.
  • 14. Le, H.B., Bui, Q.B. & Tang, L. (2021) Geopolymer recycled aggregate concrete: From experiments to empirical models. Materials, 14, 5, 1180, DOI: 10.3390/ma14051180.
  • 15. Pietrzak, A. (2018) Assesment of the impact of recycling from PET bottles in selected concrete properties. Construction of Optimized Energy Potential, 7, 1, 51-56, DOI: 10.17512/bozpe.2018.1.07.
  • 16. Pietrzak, A. & Ulewicz, M. (2023) Influence of post-consumer waste thermoplastic elastomers obtained from used car floor mats on concrete properties. Materials, 16(6), 2231, DOI: 10.3390/ma16062231.
  • 17. Plöckl, M. (2019) Effect of Strain Rate on the Tensile, Compressive, and Shear Response of Carbon- -Fiber-Reinforced Thermoplastic Composites. Technische Universität München [Online]. Available: www.lcc.mw.tum.de
  • 18. Rahman, M. & Islam, A. (2012) Recycled polymer materials as aggregates for concrete and blocks. Journal of Chemical Engineering, 27, 1, 53-57, DOI: 10.3329/jce.v27i1.15859.
  • 19. Richeton, J., Ahzi, S., Vecchio, K.S., Jiang, F.C. & Adharapurapu, R.R. (2006) Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress. International Journal of Solids and Structures, 43, 7-8, 2318-2335.
  • 20. Qiu, K., Chen, S., Wang, C., Yang, B. & Jiang, J. (2023) Optimal design of multi-scale fibre-reinforced cement-matrix composites based on an orthogonal experimental design. Polymers, 15, 13, 2898, DOI: 10.3390/polym15132898.
  • 21. Salih, S.E. (2018) Mechanical Behavior of Polymers in Mechanical Behavior of Materials. University of Technology, 339-362.
  • 22. Sepe, M. (2016) Understanding strain-rate sensitivity in polymers. Plastics Technology, 62, 8, 26-29.
  • 23. Spaeth, V. & Djerbi Tegguer, A. (2013) Improvement of recycled concrete aggregate properties by polymer treatments. International Journal of Sustainable Built Environment, 2, 143-152.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd1d4358-cb80-4572-ad63-272718e794c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.