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Abstract. In this paper, we investigate the existence and controllability of mild solutions for
a damped second order impulsive functional differential equation with state-dependent delay
in Banach spaces. The results are obtained by using Sadovskii’s fixed point theorem combined
with the theories of a strongly continuous cosine family of bounded linear operators. Finally,
an example is provided to illustrate the main results.
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1. INTRODUCTION

In this paper, we are interested to study the existence and controllability of
mild solutions for a damped second order impulsive functional differential equa-
tion with state-dependent delay in Banach spaces. First, we consider the following
class of damped second order impulsive neutral functional differential equation with
state-dependent delay in the form:

x′′(t) = Ax(t) +Dx′(t) + f(t, xρ(t,xt)), t ∈ I = [0, a], (1.1)
x0 = ϕ ∈ B, x′(0) = η ∈ X, (1.2)

∆x(ti) = Ii(xti), i = 1, 2, . . . , n, (1.3)
∆x′(ti) = Ji(xti), i = 1, 2, . . . , n, (1.4)

where A is the infinitesimal generator of a strongly continuous cosine function
of bounded linear operator (C(t))t∈R defined on a Banach space X; the func-
tion xs : (−∞, 0]→ X, xs(θ) = x(s + θ), belongs to some abstract phase space B
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described axiomatically; D is a bounded linear operator on a Banach space X;
0 < t1 < . . . < tn < a are prefixed numbers; f : I × B → X, ρ : I × B → (−∞, a],
Ii(·) : B → X, Ji(·) : B → X are appropriate functions and the symbol ∆ξ(t) repre-
sents the jump of the function ξ(·) at t, which is defined by ∆ξ(t) = ξ(t+)− ξ(t−).

The theory of impulsive differential equations appears as a natural description of
several real processes subject to certain perturbations whose duration is negligible in
comparison with the total duration of the process, such changes can be reasonably
well approximated as being instantaneous changes of state, or in the form of impulses.
These process tend to be more suitably modeled by impulsive differential equations,
which allow for discontinuities in the evolution of the state. For more details on this
theory and on its applications, we refer to the monographs of Lakshmikantham et
al. [39], Samoilenko and Perestyuk [50], Bainov and Simeonov [5], and the papers of
[9, 10,13–17,29–31,41,47,48] and the references therein.

In control theory, one of the most important qualitative properties of dynamical
systems is controllability. The problem of controllability is to show the existence of a
control function, which steers the solution of the system from its initial state to final
state, where the initial and final states may vary over the entire space. Many authors
have studied the controllability of nonlinear systems with and without impulses, see
for instance [6, 37, 43–46, 51]. In dynamical systems damping is another important
issue; it may be mathematically modelled as a force synchronous with the velocity of
the object but opposite in direction to it. Concerning first and second order differential
equations with a damped term we cite [3, 4, 32,40,52] among some works.

On the other hand, functional differential equations with state-dependent delay
appear frequently in applications as the model of equations and for this reason the
study of this type of equations has received much attention in the recent years. The
reader is referred to [1,2,7,8,12,18–20,22–28,42] and the references therein for some
examples and applications. The literature related to second order impulsive differential
systems with state-dependent delay is very limited, and related to this matter we only
cite [11,34]. To the best of our knowledge, the study of the existence and controllability
system described in the abstract form (1.1)–(1.4) is an untreated problem, and this
fact is the main motivation of this paper.

This paper is organized as follows. In Section 2, we recall some notations, defini-
tions and preliminary facts which will be used throughout this paper. In Section 3,
we establish sufficient conditions for the existence of mild solutions for the problem
(1.1)–(1.4) by using Sadovskii’s fixed point theorem combined with the theories of
a cosine family of bounded linear operators. In Section 4, we study controllability
results for the problem (1.1)–(1.4). In Section 5, we present some examples to show
the application of the results.

2. PRELIMINARIES

In this section, we recall briefly some notations, definitions and lemmas needed to
establish our main results.
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Throughout this paper (X, ‖ · ‖) is a Banach space and A is the infinitesimal gen-
erator of a strongly continuous cosine function of bounded linear operators (C(t))t∈R
on Banach space X.

Definition 2.1. A one parameter family (C(t))t∈R of bounded linear operators map-
ping the Banach space X into itself is called a strongly continuous cosine family iff:

(i) C(s+ t) + C(s− t) = 2C(s)C(t) for all s, t ∈ R,
(ii) C(0) = I,
(iii) C(t)x is continuous in t on R for each fixed x ∈ X.

We denote by (S(t))t∈R the sine function associated with (C(t))t∈R which is defined
by S(t)x =

∫ t
0
C(s)xds, x ∈ X, t ∈ R and we always assume that N and N are positive

constants such that ‖C(t)‖ ≤ N and ‖S(t)‖ ≤ N , for every t ∈ I. The infinitesimal
generator of a strongly continuous cosine family (C(t))t∈R is the operator A : X → X
defined by

Ax =
d2

dt2
C(t)x|t=0, x ∈ D(A),

where
D(A) = {x ∈ X : C(t)x is twice differentiable in t}.

Define
E = {x ∈ X : C(t)x is once continuously differentiable in t}.

The following properties are well known ([53]):

(i) If x ∈ X then S(t)x ∈ E for every t ∈ R.
(ii) If x ∈ E then S(t)x ∈ D(A), ( ddt )C(t)x = AS(t)x and ( d

2

dt2 )S(t)x = S(t)x for
every t ∈ R.

(iii) If x ∈ D(A) then C(t)x ∈ D(A), and ( d
2

dt2 )C(t)x = AC(t)x = C(t)Ax for every
t ∈ R.

(iv) If x ∈ D(A) then S(t)x ∈ D(A), and ( d
2

dt2 )S(t)x = AS(t)x = S(t)Ax for every
t ∈ R.

In this paper, [D(A)] stands for the domain of the operator A endowed with the
graph norm ‖x‖A = ‖x‖ + ‖Ax‖, x ∈ D(A). Moreover, in this work, E is the space
formed by the vectors x ∈ X for which C(·)x is of class C1 on R. It was proved by
Kisinsky ([38]) that E endowed with the norm

‖x‖E = ‖x‖+ sup
0≤t≤1

‖AS(t)x‖, x ∈ E, (2.1)

is a Banach space. The operator valued function G(t) =

[
C(t) S(t)
AS(t) C(t)

]
is a strongly

continuous group of bounded linear operators on the space E ×X generated by the

operatorA =

[
0 I
A 0

]
defined on D(A)×E. It follows from this that AS(t) : E → X
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is a bounded linear operator and that AS(t)x→ 0, t → 0, for each x ∈ E. Further-
more, if x : [0,∞)→ X is a locally integrable function, then z(t) =

∫ t
0
S(t− s)x(s)ds

defines an E-valued continuous function. This is a consequence of the fact that

t∫

0

G(t− s)
[

0
x(s)

]
ds =




t∫

0

S(t− s)x(s) ds,

t∫

0

C(t− s)x(s) ds



T

defines an E ×X-valued continuous function.
The existence of solutions for the second order abstract Cauchy problem

x′′(t) = Ax(t) + h(t), 0 ≤ t ≤ a, (2.2)
x(0) = z, x′(0) = w, (2.3)

where h : I → X is an integrable function has been discussed in [53]. Similarly, the
existence of solutions of the semilinear second order abstract Cauchy problem has
been treated in [54]. We only mention here that the function x(·) given by

x(t) = C(t)z + S(t)w +

t∫

0

S(t− s)h(s)ds, 0 ≤ t ≤ a, (2.4)

is called a mild solution of (2.2)–(2.3), and that when z ∈ E, x(·) is continuously
differentiable and

x′(t) = AS(t)z + C(t)w +

t∫

0

C(t− s)h(s)ds, 0 ≤ t ≤ a. (2.5)

For additional details about the cosine function theory, we refer the reader
to [53,54].

To consider the impulsive conditions (1.3)–(1.4), it is convenient to introduce some
additional concepts and notations.

A function u : [σ, τ ] → X is said to be a normalized piecewise continuous func-
tion on [σ, τ ] if u is piecewise continuous and left continuous on (σ, τ ]. We denote
by PC([σ, τ ], X) the space of normalized piecewise continuous functions from [σ, τ ]
into X. In particular, we introduce the space PC formed by all normalized piecewise
continuous functions u : [0, a]→ X such that u is continuous at t 6= ti, u(t−i ) = u(ti)
and u(t+i ) exists, for i = 1, . . . , n. It is clear that PC endowed with the norm
‖u‖PC = sups∈I ‖u(s)‖ is a Banach space.

In what follows, we set t0 = 0, tn+1 = a, and for u ∈ PC we denote by ũi,
for i = 0, 1, . . . , n − 1, the function ũi ∈ C([ti, ti+1];X) given by ũi(t) = u(t) for
t ∈ (ti, ti+1] and ũi(ti) = limt→t+i u(t). Moreover, for a set B ⊆ PC, we denote by B̃i,

for i = 0, 1, . . . , n− 1, the set B̃i = {ũi : u ∈ B}.
Lemma 2.2 ([33]). A set B ⊆ PC is relatively compact in PC if and only if each set
B̃i, i = 0, 1, . . . , n− 1, is relatively compact in C([ti, ti+1], X).
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In this work we will employ an axiomatic definition of the phase space B, which
has been used in [33] and suitably modified to treat retarded impulsive differential
equations. Specifically, B will be a linear space of functions mapping (−∞, 0] into X
endowed with a seminorm ‖ · ‖B and we will assume that B satisfies the following
axioms:

(A) If x : (−∞, σ+b]→ X, b > 0, is such that xσ ∈ B and x|[σ,σ+b] ∈ PC([σ, σ+b], X),
then for every t ∈ [σ, σ + b) the following conditions hold:
(i) xt is in B,
(ii) ‖ x(t) ‖≤ H ‖ xt ‖B,
(iii) ‖ xt ‖B≤ K(t− σ) sup{‖ x(s) ‖: σ ≤ s ≤ t}+M(t− σ) ‖ xσ ‖B,
where H > 0 is a constant; K,M : [0,∞)→ [1,∞), K is continuous, M is locally
bounded, and H,K,M are independent of x(·).

(B) The space B is complete.

For more details about phase space axioms and examples, we refer the reader
to [27].

Additional terminologies and notations used in the sequel are standard in func-
tional analysis. In particular, for Banach spaces (Z, ‖ · ‖Z), (W, ‖ · ‖W ), the notation
L(Z,W ) stands for the Banach space of bounded linear operators from Z into W and
we abbreviate to L(Z) whenever Z = W . Additionally, Br(x, Z) denotes the closed
ball with center at x and radius r > 0 in Z.

Our main results are based upon the following well-known result.

Lemma 2.3 (Sadovskii’s Fixed Point Theorem [49]). Let G be a condensing operator
on a Banach space X. If G(S) ⊂ S for a convex, closed and bounded set S of X, then
G has a fixed point in S.

3. EXISTENCE RESULTS

In this section, we discuss the existence of mild solutions for the abstract system
(1.1)–(1.4). We also suppose that ρ : I × B → (−∞, a] is a continuous function.
Additionally, we introduce the following conditions:

(Hϕ) Let R(ρ−) = {ρ(s, ψ) : (s, ψ) ∈ I ×B, ρ(s, ψ) ≤ 0}. The function t→ ϕt is well
defined from R(ρ−) into B and there exists a continuous and bounded function
Jϕ : R(ρ−)→ (0,∞) such that ‖ϕt‖B ≤ Jϕ(t)‖ϕ‖B for every t ∈ R(ρ−).

(H1) The function f : I × B → X satisfies the following conditions:
(i) Let x : (−∞, a] → X be such that x0 = ϕ and x|I ∈ PC. The func-

tion t→ f(t, xρ(t,xt)) is measurable on I and the function t → f(s, xt) is
continuous on R(ρ−) ∪ I for every s ∈ I.

(ii) For each t ∈ I, the function f(t, ·) : B → X is continuous.
(iii) There exists an integrable function m : I → [0,∞) and a continuous non-

decreasing function W : [0,∞)→ (0,∞) such that for every (t, ψ) ∈ I ×B

‖ f(t, ψ) ‖≤ m(t)W (‖ ψ ‖B), lim inf
ξ→∞

W (ξ)

ξ
= Λ <∞.
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(H2) There are positive constants LIi , LJi such that

‖Ii(ψ1)− Ii(ψ2)‖ ≤ LIi‖ψ1 − ψ2‖B, ψj ∈ B, i = 1, 2, . . . , n,

‖Ji(ψ1)− Ji(ψ2)‖ ≤ LJi‖ψ1 − ψ2‖B, ψj ∈ B, i = 1, 2, . . . , n.

Remark 3.1. The condition (Hϕ) is frequently satisfied by functions that are con-
tinuous and bounded. In fact, assume that the space of continuous and bounded
functions Cb((−∞, 0], X) is continuously included in B. Then, there exists L > 0 such
that

‖ϕt‖B ≤ L
supθ≤0 ‖ϕ(θ)‖
‖ϕ‖B

‖ϕ‖B, t ≤ 0, ϕ 6= 0, ϕ ∈ Cb((−∞, 0], X).

It is easy to see that the space Cb((−∞, 0], X) is continuously included in
PCg(X) and PC0

g (X). Moreover, if g(·) verifies (g-5)–(g-6) in [36] and g(·) is inte-
grable on (−∞,−r], then the space Cb((−∞, 0], X) is also continuously included in
PCr×Lp(g;X). For complementary details related to this matter, see Proposition 7.1.1
and Theorems 1.3.2 and 1.3.8 in [36].

Motivated by (2.4) we define the following concept of mild solutions for the system
(1.1)–(1.4). If x(·) is a solution of (1.1)–(1.4), then from (2.4), we adopt the following
concept of mild solution,

x(t) = C(t)ϕ(0) + S(t)η +

t∫

0

S(t− s)[Dx′(s) + f(s, xρ(s,xs))]ds+

+
∑

0<ti<t

C(t− ti)Ii(xti) +
∑

0<ti<t

S(t− ti)Ji(xti), t ∈ I.

Motivated from the above expression, we present the following definition.

Definition 3.2. A function x : (−∞, a]→ X is called a mild solution of the abstract
Cauchy problem (1.1)–(1.4) if x0 = ϕ, xρ(s,xs) ∈ B for every s ∈ I, x(·)|I ∈ PC and

x(t) = C(t)ϕ(0) + S(t)η +

j−1∑

i=0

[S(t− ti+1)Dx(t−i+1)− S(t− ti)Dx(t+i )]−

− S(t− tj)Dx(t+j ) +

t∫

0

C(t− s)Dx(s)ds+

t∫

0

S(t− s)f(s, xρ(s,xs))ds+

+
∑

0<ti<t

C(t− ti)Ii(xti) +
∑

0<ti<t

S(t− ti)Ji(xti), t ∈ I.

Remark 3.3. In the rest of this paper, y : (−∞, a] → X is the function de-
fined by y(t) = ϕ(t) on (−∞, 0] and y(t) = C(t)ϕ(0) + S(t)ζ for t ∈ I. In addi-
tion, ‖y‖a, Ma, Ka, and Jϕ0 are the constants defined by ‖y‖a = sups∈[0,a] ‖y(s)‖,
Ma = sups∈[0,a]M(s), Ka = sups∈[0,a]K(s) and Jϕ0 = sup

t∈R(ρ−)

Jϕ(t).
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Lemma 3.4 ([35, Lemma 2.1]). Let x : (−∞, a]→ X be a function such that x0 = ϕ
and x(·)|I ∈ PC. Then

‖xs‖B ≤ (Ma + Jϕ0 )‖ϕ‖B +Ka sup{ ‖x(θ)‖, θ ∈ [0, max{0, s}] }, s ∈ R(ρ−) ∪ I.

Theorem 3.5. Let conditions (Hϕ), (H1), (H2) hold and assume that S(t) is compact
for every t ∈ R. If

Ka

[ 1

Ka
(3N + aN)‖D‖+N lim inf

ξ→∞
W (ξ)

ξ

a∫

0

m(s)ds+
n∑

i=1

(NLIi +NLJi)
]
< 1,

then there exists a mild solution of (1.1)–(1.4).

Proof. On the space Y = {x ∈ PC : u(0) = ϕ(0)} endowed with the uniform conver-
gence topology, we define the operator Γ : Y → Y by

Γx(t) = C(t)ϕ(0) + S(t)η +

t∫

0

C(t− s)Dx̄(s)ds+

t∫

0

S(t− s)f(s, x̄ρ(s,x̄s))ds+

+

j−1∑

i=0

[S(t− ti+1)Dx̄(t−i+1)− S(t− ti)Dx̄(t+i )]− S(t− t+j )Dx̄(t+j )+

+
∑

0<ti<t

C(t− ti)Ii(x̄ti) +
∑

0<ti<t

S(t− ti)Ji(x̄ti), t ∈ I,

where x̄ : (−∞, a]→ X is such that x̄0 = ϕ and x̄ = x on I. From the axiom (A) and
our assumptions on ϕ, we infer that Γx ∈ PC.

Next, we prove that there exists r > 0 such that Γ(Br(y|I , Y )) ⊆ Br(y|I , Y ). If
we assume this property is false, then for every r > 0 there exist xr ∈ Br(y|I , Y ) and
tr ∈ I such that r < ‖Γxr(tr)− y(tr)‖. Then, from Lemma 3.4, we get

r < ‖Γxr(tr)− y(tr)‖ ≤

≤ 3N‖D‖r + aN‖D‖r +N

tr∫

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds+

+
n∑

i=1

N(LIi‖x̄ti − yti‖B + ‖Ii(yti)‖) +
n∑

i=1

N(LJi‖x̄ti − yti‖B + ‖Ji(yti)‖) ≤

≤ 3N‖D‖r + aN‖D‖r+

+NW ((Ma + Jϕ0 )‖ϕ‖B +Kar +Ka‖y‖a)

a∫

0

m(s)ds+

+

n∑

i=1

N(LIiKar + ‖Ii(yti)‖) +

n∑

i=1

N(LJiKar + ‖Ji(yti)‖),
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and hence

1 ≤ Ka

[ 1

Ka
(3N + aN)‖D‖+N lim inf

ξ→∞
W (ξ)

ξ

a∫

0

m(s)ds+
n∑

i=1

(NLIi +NLJi)
]
,

which is contrary to our assumption.
Let r > 0 be such that Γ(Br(y|I , Y )) ⊂ Br(y|I , Y ). In order to prove that Γ is a

condensing map on Br(y|I , Y ) into Br(y|I , Y ). For this, we decompose Γ as Γ1 + Γ2,
where

Γ1x(t) = C(t)ϕ(0) + S(t)η +

t∫

0

C(t− s)Dx̄(s)ds+

+

j−1∑

i=0

[S(t− ti+1)Dx̄(t−i+1)− S(t− ti)Dx̄(t+i )]−

− S(t− tj)Dx̄(t+j ) +
∑

0<ti<t

C(t− ti)Ii(x̄ti) +
∑

0<ti<t

S(t− ti)Ji(x̄ti),

Γ2x(t) =

t∫

0

S(t− s)f(s, x̄ρ(s,x̄s))ds,

From the proof of [26, Theorem 3.4], we conclude that Γ2 is completely continuous.
Moreover, from the estimate

‖Γ1x− Γ1z‖PC ≤

≤ 3N‖D‖‖x− z‖PC + aN‖D‖‖x− z‖PC +Ka

n∑

i=1

(NLIi +NLJi )‖x− z‖PC ≤

≤ Ka

[
1

Ka
(3N + aN)‖D‖+

n∑

i=1

(NLIi +NLJi )

]
‖x− z‖PC .

It follows that Γ1 is contraction on Br(y|I , Y ), which implies that Γ is a condensing
operator on Br(y|I , Y ).

Finally, from Lemma 2.3 we infer that there exists a mild solution of (1.1)–(1.4).
This completes the proof.

4. CONTROLLABILITY RESULTS

In this section, we shall establish sufficient conditions for the controllability of mild
solutions for a damped second order impulsive functional differential equation with
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state-dependent delay. More precisely, we consider the following abstract control sys-
tem in the form:

x′′(t) = Ax(t) +Dx′(t) +Bu(t) + f(t, xρ(t,xt)), t ∈ I = [0, a], (4.1)
x0 = ϕ ∈ B, x′(0) = η ∈ X, (4.2)

∆x(ti) = Ii(xti), i = 1, 2, . . . , n, (4.3)
∆x′(ti) = Ji(xti), i = 1, 2, . . . , n, (4.4)

where A,D, f, Ii and Ji are defined as in equations (1.1)–(1.4), the control function
u(·) given in L2(I, U), a Banach space of admissible control functions with U as a
Banach space and B : U → X is a bounded linear operator on a Banach space X with
D(D) ⊂ D(A).

Furthermore, we assume the following conditions:

(H1)′ The function f : I × B → X satisfies the following conditions:
(i) The function f : I × B → X is completely continuous.
(ii) For every positive constant r, there exists an αr ∈ L1(I) such that

sup
‖ψ‖≤r

‖f(t, ψ)‖ ≤ αr(t).

(H3) B is continuous operator from U to X and the linear operator
W : L2(I, U)→ X, defined by

Wu =

a∫

0

S(a− s)Bu(s)ds,

has a bounded invertible operator, W−1 which takes the values in
L2(I, U)/KerW such that ‖B‖ ≤ M1 and ‖W−1‖ ≤ M2 for some positive
integers M1,M2.

(H4) The maps Ii, Ji : B → X, i = 1, 2, . . . , n, are completely continuous and
there exist continuous nondecreasing functions λi, µi : [0,∞) → (0,∞), i =
1, 2, . . . , n, such that

‖Ii(ψ)‖ ≤ λi(‖ψ‖B), lim inf
ξ→∞

λi(ξ)

ξ
= ξi <∞,

‖Ji(ψ)‖ ≤ µi(‖ψ‖B), lim inf
ξ→∞

µi(ξ)

ξ
= ηi <∞.

Definition 4.1. The system (4.1)–(4.4) is said to be controllable on the interval [0, a]
if for every x0 = ϕ ∈ B, x′(0) = η ∈ X and x1 ∈ X, there exists a control u ∈ L2(I, U)
such that the mild solution x(t) of (4.1)–(4.4) satisfies x(a) = x1.
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Definition 4.2. A functions x : (−∞, a]→ X is called a mild solution of the abstract
Cauchy problem (4.1)–(4.4) if x0 = ϕ, xρ(s,xs) ∈ B for every s ∈ I;x(·)|I ∈ PC and

x(t) = C(t)ϕ(0) + S(t)η +

j−1∑

i=0

[S(t− ti+1)Dx(t−i+1)− S(t− ti)Dx(t+i )]−

− S(t− tj)Dx(t+j ) +

t∫

0

C(t− s)Dx(s)ds+

+

t∫

0

S(t− s)
[
Bu(s) + f(s, xρ(s,xs))

]
ds+

∑

0<ti<t

C(t− ti)Ii(xti)+

+
∑

0<ti<t

S(t− ti)Ji(xti), t ∈ I.

Theorem 4.3. Let conditions (Hϕ), (H1) − (H3) and (H1)′ hold. Then the system
(4.1)–(4.4) is controllable on (−∞, a] provided that

(1 + aNM1M2)
[
Ka

( 1

Ka
(3N + aN)‖D‖+NΛ

a∫

0

m(s)ds+

+
n∑

i=1

(NLIi +NLJi)
)]

< 1.

Proof. Consider the space Y = {x ∈ PC : u(0) = ϕ(0)} endowed with the uniform
convergence topology. Using the assumption (H3), for an arbitrary function x(·), we
define the control

u(t) = W−1
[
x1 − C(a)ϕ(0)− S(t)η −

j−1∑

i=0

[S(a− ti+1)Dx(t−i+1)− S(a− ti)Dx(t+i )]+

+ S(a− tj)Dx(t+j )−
a∫

0

C(a− s)Dx(s)ds−
a∫

0

S(a− s)f(s, xρ(s,xs))ds−

−
∑

0<ti<a

C(a− ti)Ii(xti)−
∑

0<ti<a

S(a− ti)Ji(xti)
]
(t).
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Using this control, we shall show that the operator Γ : Y → Y defined by

Γx(t) = C(t)ϕ(0) + S(t)η +

j−1∑

i=0

[S(t− ti+1)Dx̄(t−i+1)− S(t− ti)Dx̄(t+i )]−

− S(t− tj)Dx̄(t+j ) +

t∫

0

C(t− s)Dx̄(s)ds+

+

t∫

0

S(t− s)f(s, x̄ρ(s,x̄s))ds+

+

t∫

0

S(t− ξ)BW−1
[
x1 − C(a)ϕ(0)− S(a)η−

−
j−1∑

i=0

[S(a− ti+1)Dx̄(t−i+1)−

− S(a− ti)Dx̄(t+i )] + S(a− tj)Dx̄(t+j )−
a∫

0

C(a− s)Dx̄(s)ds−

−
a∫

0

S(a− s)f(s, x̄ρ(s,x̄s))ds−
∑

0<ti<a

C(a− ti)Ii(x̄ti)−

−
∑

0<ti<a

S(a− ti)Ji(x̄ti)
]
(ξ)dξ+

+
∑

0<ti<t

C(t− ti)Ii(x̄ti) +
∑

0<ti<t

S(t− ti)Ji(x̄ti), t ∈ I,

has a fixed point x(·). This fixed point x(·) is then a mild solution of the system
(4.1)–(4.4). Clearly, (Γx)(a) = x1, which means that the control u steers the system
from the initial state ϕ to x1 in time a, provided we can obtain a fixed point of the
operator Γwhich implies that the system is controllable. Here x̄ : (−∞, a] → X is
such that x̄0 = ϕ and x̄ = x on I. From axiom (A) and our assumptions on ϕ, we
infer that Γx ∈ PC.

Next, we claim that there exists r > 0 such that Γ(Br(y|I , Y )) ⊆ Br(y|I , Y ). If
we assume this property is false, then for every r > 0 there exist xr ∈ Br(y|I , Y )
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and tr ∈ I such that r < ‖Γxr(tr)− y(tr)‖. Then, from Lemma 3.1, we get

r < ‖Γxr(tr)− y(tr)‖ ≤

≤ 3N‖D‖r + aN‖D‖r +N

tr∫

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds+

+NM1M2

tr∫

0

[
‖x1‖+NH‖ϕ‖B +N‖η‖+

+ 3N‖D‖r + aN‖D‖r +N

a∫

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds+

+
n∑

i=1

N(LIi‖x̄ti − yti‖B + ‖Ii(yti)‖)+

+

n∑

i=1

N(LJi‖x̄ti − yti‖B + ‖Ji(yti)‖)
]
dξ+

+

n∑

i=1

N(LIi‖x̄ti − yti‖B + ‖Ii(yti)‖)+

+
n∑

i=1

N(LJi‖x̄ti − yti‖B + ‖Ji(yti)‖) ≤

≤ 3N‖D‖r + aN‖D‖r+

+NW
(

(Ma + Jϕ0 )‖ϕ‖B +Kar +Ka‖y‖a
) a∫

0

m(s)ds+

+ aNM1M2

[
‖x1‖+NH‖ϕ‖B +N‖η‖+ 3N‖D‖r+

+ aN‖D‖r +NW
(
(Ma + Jϕ0 )‖ϕ‖B +Kar +Ka‖y‖a

) a∫

0

m(s)ds+

+
n∑

i=1

N(LIiKar + ‖Ii(yti)‖) +
n∑

i=1

N(LJiKar + ‖Ji(yti)‖)
]
+

+

n∑

i=1

N(LIiKar + ‖Ii(yti)‖) +

n∑

i=1

N(LJiKar + ‖Ji(yti)‖),
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and hence

1 ≤ (1 + aNM1M2)
[
Ka

( 1

Ka
(3N + aN)‖D‖+NΛ

a∫

0

m(s)ds+

+

n∑

i=1

(NLIi +NLJi)
)]
,

which contradicts to our assumption.
Let r > 0 be such that Γ(Br(y|I , Y )) ⊂ Br(y|I , Y ). In order to prove that Γ

is a condensing map on Br(y|I , Y ) into Br(y|I , Y ). We introduce the decomposition
Γ = Γ1 + Γ2, where

Γ1x(t) = C(t)ϕ(0) + S(t)η +

j−1∑

i=0

[S(t− ti+1)Dx̄(t−i+1)− S(t− ti)Dx̄(t+i )]−

− S(t− tj)Dx̄(t+j ) +

t∫

0

C(t− s)Dx̄(s)ds+
∑

0<ti<t

C(t− ti)Ii(x̄ti)+

+
∑

0<ti<t

S(t− ti)Ji(x̄ti),

Γ2x(t) =

t∫

0

S(t− s)
[
f(s, x̄ρ(s,x̄s)) +Bu(s)

]
ds.

Now

‖Bu(s)‖ ≤ ‖B‖‖W−1‖
[
‖x1‖+ ‖C(a)‖‖ϕ(0)‖+ ‖S(a)‖‖η‖+

+

j−1∑

i=0

[‖S(a− ti+1)‖‖D‖‖x̄(t−i+1)‖+ ‖S(a− ti)‖‖D‖‖x̄(t+i )‖]+

+ ‖S(a− tj)‖‖D‖‖x̄(t+j )‖+

a∫

0

‖C(a− s)‖‖D‖‖x̄(s)‖ds+
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+

a∫

0

‖S(a− s)‖‖f(s, x̄ρ(s,x̄s))‖ds+
∑

0<ti<a

‖C(a− ti)‖‖Ii(x̄ti)‖+

+
∑

0<ti<a

‖S(a− ti)‖‖Ji(x̄ti)‖
]
≤

≤M1M2

[
‖x1‖+NH‖ϕ‖B +N‖η‖+ 3N‖D‖r + aN‖D‖r+

+N

a∫

0

αr(s)ds+N
n∑

i=1

λi‖x̄ti‖+N
n∑

i=1

µi‖x̄ti‖
]
≤

≤M1M2

[
‖x1‖+NH‖ϕ‖B +N‖η‖+ 3N‖D‖r + aN‖D‖r+

+N

a∫

0

αr(s)ds+
n∑

i=1

r(Nλi +Nµi)
]

= A0.

Here by applying the same technique that is used in the proof of [43, Lemma 3.1], we
arrived that Γ2 is completely continuous.

Next, we show that Γ1 is contraction on Br(y|I , Y ). Indeed, for x, z ∈ Br(y|I , Y ),
we have

‖Γ1x− Γ1z‖PC ≤ aN‖D‖‖x− z‖PC + 3N‖D‖‖x− z‖PC +
n∑

i=1

NLIiKa‖x− z‖PC+

+
n∑

i=1

NLJiKa‖x− z‖PC ≤

≤ Ka

[ 1

Ka
(3N + aN)‖D‖+

n∑

i=1

(NLIi +NLJi)
]
‖x− z‖PC .

It follows that Γ1 is a contraction on Br(y|I , Y ) which implies that Γ is a condensing
operator on Br(y|I , Y ).

Finally, from the Sadovskii’s fixed point theorem, Γ has a fixed point on Y . This
means that any fixed point of Γ is a mild solution of the problem (4.1)–(4.4). The
proof is now complete.

5. EXAMPLES

In this section, we consider an application of our abstract results. We choose
the space X = L2([0, π]),B = PC0 × L2(g,X) is the space introduced in [36] and
A : D(A) ⊂ X → X is the operator defined by Au = u′′ with domain D(A) =
{u ∈ X : u′′ ∈ X,u(0) = u(π) = 0}. It is well-known that A is the infinitesimal
generator of a strongly continuous cosine family (C(t))t∈R on X. Furthermore, A
has a discrete spectrum, the eigenvalues are −n2, for n ∈ N, with corresponding
eigenvectors zn(τ) =

(
2
π

)1/2
sin(nτ), and the following properties hold.
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(a) The set of functions {zn : n ∈ N} forms an orthonormal basis of X.
(b) If x ∈ D(A), then Ax = −∑∞n=1 n

2〈x, xn〉xn · cosnt.
(c) For x ∈ X, C(t)x =

∑∞
n=1 cos (nt)〈x, zn〉zn and the associated sine family is

S(t)x =

∞∑

n=1

sin(nt)

n
〈x, zn〉zn,

which implies that the operator S(t) is compact, for all t ∈ R and that ‖C(t)‖ =
‖S(t)‖ = 1, for all t ∈ R.

(d) If G is the group of translations on X defined by G(t)x(ζ) = x̃(ζ + t),
where x̃(·) is the extension of x(·) with period 2π, then C(t) = 1

2

[
Φ(t) + Φ(−t)

]

and A = B2, where B is the infinitesimal generator of Φ and
E = {x ∈ H1(0, π) : x(0) = x(π) = 0} (see [21] for details).

5.1. SECOND ORDER NEUTRAL SYSTEM

Consider the following second order damped impulsive differential system with
state-dependent delay

∂2

∂t2
w(t, ζ) =

∂2

∂ζ2
w(t, ζ) + α

∂

∂t
w(t, ζ) +

π∫

0

β(s)
∂

∂t
w(t, s)ds+

+

t∫

−∞

k(s− t)w(s− ρ1(t)ρ2(‖w(t)‖), ζ)ds, t ∈ I, ζ ∈ [0, π], (5.1)

w(t, 0) = w(t, π) = 0, t ∈ I, (5.2)
∂

∂t
w(0, ζ) = ζ(π), (5.3)

w(τ, ζ) = ϕ(τ, ζ), τ ≤ 0, 0 ≤ ζ ≤ π, (5.4)

4w(ti)(ζ) =

ti∫

−∞

bi(ti − s)w(s, ζ)ds, i = 1, 2, . . . , n, (5.5)

4w′(ti)(ζ) =

ti∫

−∞

b̃i(ti − s)w(s, ζ)ds, i = 1, 2, . . . , n, (5.6)

where we assume that ϕ ∈ B with the identity ϕ(s)(ζ) = ϕ(s, ζ), ϕ(0, ·) ∈ H1([0, π])
and 0 < t1 < t2 < . . . < a. Here α is a prefixed real number and β ∈ L2([0, π]).

Let the functions ρi : [0,∞) → [0,∞), i = 1, 2, k : R → R be continuous,

Lf =
( ∫ 0

−∞
(k2(s))
g(s) ds

) 1
2

<∞, and the following conditions hold:

(a) bi, b̃i ∈ C(R,R) and LIi :=
(∫ 0

−∞
b2i (s)
g(s) ds

) 1
2

, LJi :=
(∫ 0

−∞
b̃2i (s)
g(s) ds

) 1
2

, i = 1, . . . , n,

are finite.
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Define the functions D : X → X, f : I × B → X, ρ : I × B → X, Ii : B → X and
Ji : B → X by

Dψ(ζ) = αψ(t, ζ) +

π∫

0

β(s)ψ(t, s)ds,

f(ψ)(ζ) =

0∫

−∞

k(s)ψ(s, ζ)ds,

ρ(s, ψ) = s− ρ1(s)ρ2(‖ψ(0)‖),

Ii(ψ)(ζ) =

0∫

−∞

bi(−s)ψ(s, ζ)ds, i = 1, 2, . . . , n,

Ji(ψ)(ζ) =

0∫

−∞

b̃i(−s)ψ(s, ζ)ds, i = 1, 2, . . . , n.

With the choice of A,D, f, ρ, Ii and Ji, the system (1.1)–(1.4) is the abstract formu-
lation of (5.1)–(5.6). Moreover, the maps D, g, f , Ii, Ji, i = 1, 2, . . . , n, are bounded
linear operators with

‖D‖L(X) ≤ |α|+‖β‖L2(0,a), ‖f(t, ·)‖L(B,X) ≤ Lf , ‖Ii‖L(B,X) ≤ LIi , ‖Ji‖L(B,X) ≤ LJi .
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