PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of erosion wear and pressure drop for turbulent multiphase slurry flow

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The disposal of ash in a thermal plant through the slurry pipe is subjected to some erosion wear due to the abrasive characteristics of the slurry. A simulation study of particle-liquid erosion of mild steel pipe wall based on CFD-FLUENT that considers the solid-liquid, solid-solid and solid-wall interaction is presented in this work.The multi-phase Euler-Lagrange model with standard k- ϵ turbulence modeling is adopted to predict the particulate erosion wear caused by the flow of bottom ash water suspension. Erosion rate for different particle size and concentration is evaluated at variable flow rate. It is observed that the pressure drop and erosion rate share direct relationships with flow velocity, particle size and concentration. The flow velocity is found to be the most influencing parameter. A model capable of predicting the erosion wear at variable operating conditions is presented.The simulation findings show good agreement with the published findings.
Rocznik
Strony
361--378
Opis fizyczny
Bibliografia 25 poz., rys., tab.
Twórcy
autor
  • Department of Mechanica land Industria lEngineering, Indian Institute of Technology, Roorkee, India
  • Department of Mechanica land Industria lEngineering, Indian Institute of Technology, Roorkee, India
  • Faculty of Mechanical Engineering, Department of Environmental Engineering, Czech Technical University, Prague, Czech Republic
Bibliografia
  • [1] C.A. Shook. Developments in hydrotransport. The Candian Journal of Chemical Engineering, 54(1-2):13–25, 1976. doi: 10.1002/cjce.5450540103.
  • [2] O.P. Modi, R. Dasgupta, B.K. Prasad, A.K. Jha, A.H. Yegneswaran, and G. Dixit. Erosion of a high-carbon steel in coal and bottom-ash slurries. Journal of Materials Engineering and Performance, 9(5):522–529, 2000. doi: 10.1361/105994900770345647.
  • [3] L. Zeng, G.A. Zhang, and X.P. Guo. Erosion–corrosion at different locations of X65 carbon steel elbow. Corrosion Science, 85:318–330, 2014. doi: 10.1016/j.corsci.2014.04.045.
  • [4] M.S. Patil, E.R. Deore, R.S. Jahagirdar, and S.V. Patil. Study of the Parameters Affecting Erosion Wear of Ductile Material in Solid-Liquid Mixture. In: Proceedings of the World Congress of Engineering, London, UK, 6–8 July, 2011.
  • [5] D.J. Bergstrom, T. Bender, G. Adamopoulos, and J. Postlethwaite. Numerical prediction of wall mass transfer rates in turbulent flow through a 90 degrees two-dimensional bend. The Canadian Journal of Chemical Engineering, 76(2):728–737, 1998. doi: 10.1002/cjce.5450760407.
  • [6] C.A. Shook, M. McKibben, and M. Small. Experimental investigation of some hydrodynamic factors affecting slurry pipeline wall erosion. The Canadian Journal of Chemical Engineering, 68(1):17–23, 1990. doi: 10.1002/cjce.5450680102.
  • [7] S.K. Das. Mathematical model to predict effects of fly ash hardness and angularity on erosion response of typical boiler grade steels. Tribology–Materials, Surfaces & Interfaces, 6(2):84–92, 2012. doi: 10.1179/1751583112Z.00000000012.
  • [8] H.M. Badr, M.A. Habib, R. Ben-Mansour, and S.A.M. Said. Effect of flow velocity and particle size on erosion in a pipe with sudden contraction. The 6th Saudi Engineering Conference, vol. 5:79–95, Dhahran, December 2002.
  • [9] E. Avcu, S. Fidan, Y. Yildiran, and T. Sinmazçelik. Solid particle erosion behaviour of Ti6Al4V alloy. Tribology – Materials, Surfaces & Interfaces, 7(4):201–210, 2013. doi: 10.1179/1751584X13Y.0000000043.
  • [10] V. Kannojiya, S. Kumar, M. Kanwar, and S.K. Mohapatra. Simulation of erosion wear in slurry pipe line using CFD. Applied Mechanics and Materials, 852:459–465, 2016. doi: 10.4028/www.scientific.net/AMM.852.459.
  • [11] M.A. Manzarand, S. N. Shah. Particle distribution and erosion during the flow of Newtonian and non-Newtonian slurries in straight and coiled pipes. Engineering Applications of Computational Fluid Mechanics, 3(3):296–320, 2009. doi: 10.1080/19942060.2009.11015273.
  • [12] R. Zhang, H. Liu, and C. Zhao. A probability model for solid particle erosion in a straight pipe. Wear, 308(1–2):1–9, 2013. doi: 10.1016/j.wear.2013.09.011.
  • [13] B.S. McLaury, J. Wang, S.A. Shirazi, J.R. Shadley, and E.F. Rybicki. Solid particle erosion in long radius elbows and straight pipes. Annual Technical Conference and Exhibition, San Antonio, Texas, 5–8 October 1997. doi: 10.2118/38842-MS.
  • [14] A.M. Rashidi, M. Paknezhad, M,M.R. Mohamadi-Ochmoushi and M. Moshrefi-Torbati. Comparison of erosion, corrosion and erosion-corrosion of carbon steel in fluid containing micro and nanosize particles. Tribology – Materials, Surfaces & Interfaces, 7(3):114–121, 2013. doi: 10.1179/1751584X13Y.0000000039.
  • [15] V. Kannojiya, M. Deshwal, and D. Deshwal. Numerical analysis of solid particle erosion in pipe elbow. Materials Today Proceedings, 5(2):5021–5030, 2018. doi: 10.1016/j.matpr.2017.12.080.
  • [16] P. Goosen and I. Malgas. An experimental investigation into aspects of wear in boiler ash disposal pipelines. 14th International Conference on Slurry Handling and Pipeline Transport, Maastricht, The Netherlands, 8–10 September 1999.
  • [17] A.K. Ekambara, R.S. Sanders, K. Nandakumar, J.H. Masliyah. Hydrodynamic simulation of horizontal slurry pipeline flow using ANSYS-CFX. Industrial and Engineering Chemistry Research, 48(17):8159–8171, 2009. doi: 10.1021/ie801505z.
  • [18] J. Schaan, R. Sumner, R.G. Gillies, and C. Shook. The effect of particle shape on pipeline friction for Newtonian slurries of fine particles. The Canadian Journal of Chemical Engineering, 78(4):717–725, 2000. doi: 10.1002/cjce.5450780414.
  • [19] H. Wu, X. Liang, and Z. Deng. Numerical simulation on typical parts erosion of the oil pressure pipeline. Thermal Science, 17(5):1349–1353, 2013. doi: 10.2298/TSCI1305349W.
  • [20] M.R. Safaei, O. Mahian, F. Garoosi, K. Hooman, A. Karimipour, S.N. Kazi, and S. Gharehkhani. Investigation of micro- and nano sized particle erosion in a 90c irc pipe bend using a two-phase discrete phase model.The Scientific World Journal, 2014. doi: 10.1155/2014/740578.
  • [21] S.A. Morsi and A.J. Alexander. An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics, 55(2):193–208,1972. doi: 10.1017/S0022112072001806.
  • [22] Fluent 2006 Fluent User’s Guide. Lebanon, NH, Fluent Inc.
  • [23] M.K. Singh, S. Kumar, and D. Ratha. Computational analysis on disposal of coal slurry at high solid concentrations through slurry pipeline. International Journal of Coal Preparation and Utilization, 2017. doi: 10.1080/19392699.2017.1346632.
  • [24] W. Pengand, X. Cao. Numerical simulation of solid particle erosion in pipe bends for liquid–solid flow. Powder Technology, 294:266–279, 2016. doi: 10.1016/j.powtec.2016.02.030.
  • [25] S. Chandel, V. Seshadri, and S.N. Singh. Effect of additive on pressure drop and rheological characteristics of fly ash slurry at high concentration. Particulate Science and Technology, 27(3):271–284,2009. doi: 10.1080/02726350902922036.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd0b268e-ce8e-4e2d-9a86-58728100c7d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.