PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flight Height of UAV and Its Influence on the Precise Digital Elevation Model at Complex Terrain

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wysokość lotu UAV i jego wpływ na precyzyjny cyfrowy model wysokości złożonego terenu
Języki publikacji
EN
Abstrakty
EN
The application of lightweight Unmanned Aerial Vehicle (UAV) has been increasingly common in 3D topographic surveys. Especially in the complex terrains such as open-pit mines, where the elevation is rapidly undulating, the UAV based mapping is more efficient, economic and safe compared to the conventional methods. However, one of the most important factors in UAV mapping of complex terrain is the flight altitude which needs to be seriously considered because of the safety and accuracy of generated DEMs. This paper aims to evaluate the influence of flight height on accuracy of DEMs generated for open-pit mines. For this purpose, the selected study area is a quarry with complex terrain located in the Northern Vietnam. The investigation was conducted with five flight heights of 50 m, 100 m, 150 m, 200 m, and 250 m. To assess the accuracy of resulting DEMs, 10 ground control points and 385 checkpoints measured by both GNSS/RTK and total station methods were used. The accuracy of DEM was assessed by using root-mean-square error (RMSE) in X, Y, Z, XY, and XYZ components. The result showed that the DEM models generated at the flight heights of less than 150 m have high accuracy, RMSEs on the 10 GCPs increased from 1.8 cm to 6.2 cm for vertical (Z), and from 2.6 cm to 6.3 cm for horizontal (XY), whereas RMSE on 385 checkpoints increases gradually from 0.05 m to 0.15 m for vertical (Z) when the height flight increased from 50 m to 250 m.
PL
Zastosowanie lekkich bezzałogowych statków powietrznych (UAV) jest coraz bardziej powszechne w badaniach topograficznych 3D. Zwłaszcza w skomplikowanych terenach, takich jak kopalnie odkrywkowe, w których wzniesienie gwałtownie faluje, mapowanie oparte na UAV jest bardziej wydajne, ekonomiczne i bezpieczne w porównaniu z metodami konwencjonalnymi. Jednak jednym z najważniejszych czynników w mapowaniu UAV złożonego terenu jest wysokość lotu, którą należy poważnie rozważyć ze względu na bezpieczeństwo i dokładność generowanych DEM. Niniejszy artykuł ma na celu ocenę wpływu wysokości lotu na dokładność DEM generowanych dla kopalni odkrywkowych. W tym celu wybranym obszarem badawczym jest kamieniołom o złożonym terenie położony w północnym Wietnamie. Badanie przeprowadzono przy pięciu wysokościach lotu 50 m, 100 m, 150 m, 200 m i 250 m. Aby ocenić dokładność uzyskanych DEM, wykorzystano 10 naziemnych punktów kontrolnych i 385 punktów kontrolnych mierzonych zarówno metodami GNSS/RTK, jak i metodami stacji całkowitej. Dokładność DEM oceniono za pomocą błędu pierwiastkowego średniego kwadratu (RMSE) w komponentach X, Y, Z, XY i XYZ. Wynik pokazał, że modele DEM generowane na wysokościach lotu poniżej 150 m mają wysoką dokładność, RMSE na 10 GCP wzrosły z 1,8 cm do 6,2 cm dla pionu (Z) i od 2,6 cm do 6,3 cm dla poziomu (XY), podczas gdy RMSE na 385 punktach kontrolnych wzrasta stopniowo z 0,05 m do 0,15 m dla pionu (Z), gdy lot na wysokości wzrósł z 50 m do 250 m.
Rocznik
Strony
179--186
Opis fizyczny
Bibliogr. 23 poz., tab., wykr., zdj.
Twórcy
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, 100000
autor
  • Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
autor
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, 100000
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, 100000
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, 100000
autor
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, 100000
autor
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, 100000
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, 100000
Bibliografia
  • 1. Agüera-Vega, F., Carvajal-Ramírez, F., Martínez-Carricondo, P.: Accuracy of digital surface models and orthophotos derived from unmanned aerial vehicle photogrammetry. J. Surveying Eng. (2016). 04016025.
  • 2. Bui, D. T., Long, N. Q., Bui, X.-N., Nguyen, V.-N., Van Pham, C., Van Le, C., Kristoffersen, B. (2017). Lightweight Unmanned Aerial Vehicle and Structure-from-Motion Photogrammetry for Generating Digital Surface Model for Open-Pit Coal Mine Area and Its Accuracy Assessment. Paper presented at the International Conference on
  • 3. Bui, X. N., Nguyen, Q. L., Adeel, A., Cao, X. C., Nguyen, V. N., Le, V. C., Nguyen, H., Le, Q. T., Duong, T. H., Nguyen, V. D. (2019). Use of Unmanned Aerial Vehicles for 3D topographic Mapping and Monitoring the Air Quality of Open-pit Mines. Journal of the Polish Mineral Engineering Society, 17. doi:http://doi.org/10.29227/IM-2019-02-77
  • 4. Chou, T.Y., Yeh, M.L., Chen, Y.C., Chen, Y.H., 2010. Disaster monitoring and management by the unmanned aerial vehicle technology, Proceedings of the ISPRS TC VII Symposium (W. Wagner and B. Székely, editors), Vienna, Austria, Vol. XXXVIII, Part 7B, pp. 137–142.
  • 5. Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D., 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics. 45(2), RG2004. https://doi.org/10.1029/2005RG000183
  • 6. Fuad, N.A., Ismail, Z., Majid, Z., Darwin, N., Ariff, M.F.M., Idris, K.M., Yusoff, A.R., 2018. Accuracy evaluation of digital terrain model based on different flying altitudes and conditional of terrain using UAV LiDAR technology. IOP Conference Series: Earth and Environmental Science 169, 012100. https://doi.org/10.1088/1755- 1315/169/1/012100
  • 7. Gomez, C., Purdie, H., 2016. UAV- based Photogrammetry and Geocomputing for Hazards and Disaster Risk Monitoring – A Review. Geoenvironmental Disasters 3, 23. https://doi.org/10.1186/s40677-016-0060-y
  • 8. Https://www.dxomark.com/Cameras/DJI/Phantom4-Pro---Specifications
  • 9. Kahmen, H., Faig, W., 1988. Surveying. Walter de Gruyter: Berlin, Germany.
  • 10. Lindner, G., Schraml, K., Mansberger, R., Hübl, J., 2016. UAV monitoring and documentation of a large landslide. Applied Geomatics 8, 1–11. https://doi.org/10.1007/s12518-015-0165-0
  • 11. Lohr, U., 1998. Digital Elevation Models by Laser Scanning. Photogrammetric Record 16, 105–109. https://doi. org/10.1111/0031-868X.00117
  • 12. Lucieer, A., Jong, S.M. de, Turner, D., 2014. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography: Earth and Environment 38, 97–116. https://doi.org/10.1177/0309133313515293
  • 13. Mesas-Carrascosa, F.-J., Notario García, M., Meroño de Larriva, J., García-Ferrer, A., 2016. An Analysis of the Influence of Flight Parameters in the Generation of Unmanned Aerial Vehicle (UAV) Orthomosaicks to Survey Archaeological Areas. Sensors 16, 1838. https://doi.org/10.3390/s16111838
  • 14. Meyer, D., Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D., Oimoen, M., Zhang, Z., Danielson, J., Krieger, T., Curtis, B., Haase, J., Abrams, M., Crippen, R., Carabajal, C., 2011. ASTER global digital elevation model version 2- summary of validation results. Available at: https://ssl.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Summary_ GDEM2_validation_report_final.pdf.
  • 15. Mourato, S., Fernandez, P., Pereira, L., & Moreira, M. (2017). Improving a DSM Obtained by Unmanned Aerial Vehicles for Flood Modelling. Paper presented at the IOP Conf. Series: Earth and Environmental Science.
  • 16. Nguyen, Q. L., Bui, X. N., Cao, X. C., Le, V. C. (2019). An approach of mapping quarries in Vietnam using low-cost Unmanned Aerial Vehicles. Journal of the Polish Mineral Engineering Society, 17. doi:http://doi.org/10.29227/IM2019-02-79
  • 17. Paneque-Gálvez, J., McCall, M. K., Napoletano, B. M., Wich, S. A., & Koh, L. P. (2014). Small drones for community-based forest monitoring: An assessment of their feasibility and potential in tropical areas. Forests, 5(6), 1481–1507.
  • 18. Rokhmana, C. A. (2015). The Potential of UAV-based Remote Sensing for Supporting Precision Agriculture in Indonesia. Procedia Environmental Sciences, 24(Supplement C), 245-253. doi:https://doi.org/10.1016/j. proenv.2015.03.032
  • 19. Salvo, G., Caruso, L., & Scordo, A. (2014). Urban Traffic Analysis through an UAV. Procedia - Social and Behavioral Sciences, 111, 1083-1091.
  • 20. Udin, W.S., Ahmad, A., 2014. Assessment of Photogrammetric Mapping Accuracy Based on Variation Flying Altitude Using Unmanned Aerial Vehicle. IOP Conference Series: Earth and Environmental Sciences 18, 012027. https://doi.org/10.1088/1755-1315/18/1/012027
  • 21. Watson, C., Kargel, J., Tiruwa, B., 2019. UAV-Derived Himalayan Topography: Hazard Assessments and Comparison with Global DEM Products. Drones 3, 18. https://doi.org/10.3390/drones3010018
  • 22. Yusoff, A.R., Darwin, N., Majid, Z., Ariff, M.F.M., Idris, K.M., 2018. Comprehensive analysis of flying altitude for high resolution slope mapping using UAV technology. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3/W4, 583–589. https://doi.org/10.5194/isprs-archives-XLII3-W4-583-2018
  • 23. Xuan-Nam Bui , Y. C., Victor Atrushkevich, Hoang Nguyen , Quang-Hieu Tran, Nguyen Quoc Long, Hung-Thang Hoang. (2019). Prediction of Blast-Induced Ground Vibration Intensity in Open-Pit Mines Using Unmanned Aerial Vehicle and a Novel Intelligence System. International Association for Mathematical Geosciences, 20. doi:https:// doi.org/10.1007/s11053-019-09573-7
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
W wersji drukowanej czasopisma autorzy: Bui Xuan Nam , Nguyen Quoc Long , Le Thi Thu Ha , Bui Ngoc Quy , Goyal Ropesh , Vo Trong Hung , Pham Van Chung , Cao Xuan Cuong , Le Van Canh , Le Hong Viet
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd0a9aa8-c1af-40e6-af54-b0504e92ea43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.