PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using AI tools in the Kano method to improve the product design process in a customer-centric enterprise

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aims to present the potential for integrating the classic Kano method with artificial intelligence tools to support customer needs research and segmentation for manufacturing companies. This research provides a literature review of the Kano method and AI technologies used to analyze customer data. A case study conducted at a Polish manufacturing company in the SME sector explored ways to better align offerings with market expectations. The study is based on identifying product features and developing a Kano questionnaire, followed by the use of popular chatbots (i.e., ChatGPT, Copilot, and Gemini) to automatically assign these features to the appropriate Kano model categories. The data originates from online surveys and direct contact at points of sale. The results of the automated analysis are compared with traditional results, assessing the compatibility of both approaches. The paper demonstrates that integrating these two methods significantly improves the decision-making process for product development, increasing the precision of customer needs identification and the effectiveness of implemented innovations.
Rocznik
Strony
24--33
Opis fizyczny
Bibliogr. 60 poz., tab.
Twórcy
  • Czestochowa University of Technology, Faculty of Management Department of Production Engineering and Safety 19b Armii Krajowej Ave., 42-218 Czestochowa, Poland
Bibliografia
  • 1. Abduljabbar, R., Dia, H., Liyanage, S. & Bagloee, S.A. (2019) Applications of artificial intelligence in transport: An overview. Sustainability 11 (1), 189, doi: 10.3390/ su11010189.
  • 2. Al Rabaiei, K., Alnajjar, F. & Ahmad, A. (2021) Kano model integration with data mining to predict customer satisfaction. Big Data and Cognitive Computing 5 (4), 66, doi: 10.3390/bdcc5040066.
  • 3. Ameen, N., Tarhini, A., Reppel, A. & Anand, A. (2021) Customer experiences in the age of artificial intelligence. Computers in Human Behavior 114, 106548, doi: 10.1016/j. chb.2020.106548.
  • 4. Ashurbaev, O. & Abdusattorova, K. (2024) Artificial intelligence opportunities and ethical concerns in daily life. Web of Scientist: International Scientific Research Journal 5 (12), pp. 294–314.
  • 5. Bajwa, J., Munir, U., Nori, A. & Williams, B. (2021) Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthcare Journal 8 (2), e188-e194, doi: 10.7861/fhj.2021-0095.
  • 6. Bharadiya, J. (2023) Artificial intelligence in transportation systems a critical review. American Journal of Computing and Engineering 6 (1), pp. 34–45, doi: 10.47672/ajce.1487.
  • 7. Binder, M., Vogt, A., Bajraktari, A. & Vogelsang, A. (2023) Automatically classifying Kano model factors in app reviews. In: Ferrari, A., Penzenstadler, B. (eds) Requirements Engineering: Foundation for Software Quality. REFSQ 2023. Lecture Notes in Computer Science 13975, pp. 245–261, Springer, Cham, doi: 10.1007/978-3-031- 29786-1_17.
  • 8. Brajer-Marczak, R. (2015) Doskonalenie zarządzania jakością procesów i produktów w organizacjach. Wrocław: Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu.
  • 9. Broniewski, P. (2025a) Czym jest przetwarzanie języka naturalnego (NLP – natural language processing)? [Online]. Available from: https://webporadnik.pl/czym-jestprzetwarzanie-jezyka-naturalnego-nlp-natural-languageprocessing/ [Accessed: May 11, 25].
  • 10. Broniewski, P. (2025b) Sztuczna inteligencja (AI). Co to jest i jak działa. Podstawowe informacje. [Online]. Available from: https://webporadnik.pl/sztuczna-inteligencja-aico-to-jest-i-jak-dziala-podstawowe-informacje/ [Accessed: May 11, 25].
  • 11. Dhiman, N., Prashar, N. & Kumari, A. (2025) A systematic review of AI-enhanced chatbot using distinct NLP approaches. AIP Conference Proceedings 3261 (1), 220002, doi: 10.1063/5.0258633.
  • 12. Dwivedi, N.M., Shrivastava, V., Pandey, A. & Tewari, A.K. (2024) Advancements and applications of natural language processing. International Journal of Research Publication and Reviews 5 (5), pp. 6788–6787.
  • 13. Dwivedi, Y.K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P.V., Janssen, M., Jones, P., Kar, A.K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., Medaglia, R., Le Meunier-Fitzhugh, K., Le Meunier-Fitzhugh, L.C., Misra, S., Mogaji, E., Sharma, S.K., Singh, J.B., Raghavan, V., Raman, R., Rana, N.P., Samothrakis, S., Spencer, J., Tamilmani, K., Tubadji, A., Walton, P. & Williams, M.D. (2021) Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management 57, 101994, doi: 10.1016/j.ijinfomgt.2019.08.002.
  • 14. Edelman, D.C. & Abraham, M. (2022) Customer experience in the age of AI. Harvard Business Review. Digital Article [Accessed: May 12, 2025].
  • 15. Erevelles, S., Fukawa, N. & Swayne, L. (2016) Big data consumer analytics and the transformation of marketing. Journal of Business Research 69 (2), pp. 897–904, doi: 10.1016/j.jbusres.2015.07.001.
  • 16. Fischer, A. (2024) How AI is Transforming Web Analytics: A New Era for Data-Driven Insights. [Online] 30 October. Available from: https://www.linkedin.com/pulse/how-aitransforming-web-analytics-new-era-data-driven-arnaudfischer-zzgte [Accessed: May 12, 2025].
  • 17. Gąbka, J. & Przybyś, K. (2025) Analysis of algorithms for AI virtual player in the production management training platform. Production Engineering Archives 31 (1), pp. 106– 115, doi: 10.30657/pea.2025.31.10.
  • 18. Hristova, V., Wiśnicki, B. & Wołejsza, P. (2024) Chatbots in maritime education—the potential of chatbot technology in the maritime industry. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Politechniki Morskiej w Szczecinie 77 (149), pp. 21–28, doi: 10.17402/593.
  • 19. Hu, Y. & Wang, H. (2024) A review of mining user needs based on text sentiment analysis technology and KANO model. ICIIP’24: Proceedings of the 2024 9th International Conference on Intelligent Information Processing, pp. 257– 264, doi: 10.1145/3696952.3696987.
  • 20. Ingaldi, M., Kadłubek, M. & Dziuba, S. (2018) Kano model as an instrument of total quality management. In: Okręglicka, M., Korombel, A., Lemańska-Majdzik, A. (Eds) Proceedings of the 2nd International Conference Contemporary Issues in Theory and Practice of Management, pp. 149–156. Częstochowa: Wydawnictwo Wydziału Zarządzania Politechniki Częstochowskiej.
  • 21. Ingaldi, M. & Ulewicz, R. (2019) How to make e-commerce more successful by use of Kano’s model to assess customer satisfaction in terms of sustainable development. Sustainability 11 (18), 4830, doi: 10.3390/su11184830.
  • 22. Ivković, D., Arsić, D., Adamović, D., Nikolić, R., Mitrović, A. & Bokuvka, O. (2024) Predicting the mechanical properties of stainless steels using Artificial Neural Networks. Production Engineering Archives 30 (2), pp. 225–232, doi: 10.30657/pea.2024.30.21.
  • 23. Jagusiak-Kocik, M. (2020) Customer attributes impact on perceived quality of children’s furniture—Kano model. In: Ulewicz, R. & Hadzima, B. (Eds) Quality Production Improvement, pp. 53–59. Warszawa: Wydawnictwo De Gruyter.
  • 24. Jagusiak-Kocik, M. (2022) Using the advantages of the KANO model in the process of designing a modern summer house. Construction of Optimized Energy Potential, Budownictwo o Zoptymalizowanym Potencjale Energetycznym 11, pp. 49–56, doi: 10.17512/bozpe.2022.11.06.
  • 25. Jagusiak-Kocik, M. & Idzikowski, A. (2023) Implementation of the Kano Model in a company providing public transport services. Transportation Research Procedia 74, pp. 57–63, doi: 10.1016/j.trpro.2023.11.112.
  • 26. Jain, V., Wadhwani, K. & Eastman, J.K. (2024) Artificial intelligence consumer behavior: A hybrid review and research agenda. Journal of Customer Behaviour 23 (2), pp. 676–697, doi: 10.1002/cb.2233.
  • 27. Klaus, P. & Zaichkowsky, J. (2020) AI voice bots: a services marketing research agenda. Journal of Services Marketing 34 (3), pp. 389–398, doi: 10.1108/JSM-01-2019- 0043.
  • 28. Kuo, Y.-F. (2004) Integrating Kano’s model into web-community service quality. Total Quality Management & Business Excellence 15 (7), pp. 925–939, doi: 10.1080/1478336 0410001681854.
  • 29. Kuzior, A. (2024) Artificial Intelligence in shaping the smart sustainable city. System Safety: Human—Technical Facility—Environment 6 (1), pp. 1–8, doi: 10.2478/czoto2024-0001.
  • 30. Ledro, C., Nosella, A. & Pozza, I.D. (2023) Integration of AI in CRM: Challenges and guidelines. Journal of Open Innovation: Technology, Market and Complexity 9 (4), 100151, doi: 10.1016/j.joitmc.2023.100151.
  • 31. Luor, T., Lu, H.-P., Chien, K.-M. & Wu, T.-Ch. (2015) Contribution to quality research: a literature review of Kano’s model from 1998 to 2012. Total Quality Management & Business Excellence 26 (3–4), pp. 234–247, doi: 10.1080/14783363.2012.733264.
  • 32.Madzik, P. (2018) Increasing accuracy of the Kano model—a case study. Total Quality Management & Business Excellence 29 (3–4), pp. 387–409, doi: 10.1080/14783363. 2016.1194197.
  • 33. Marutschke, D.M. & Hayashi, Y. (2021) AI-supported evaluation of Kano model features for online courses. ICIS Express Letters 16 (5), pp. 505–512.
  • 34. Meng, Q. & Dong, J. (2018) Future direction and visual analysis of Kano Model: A literature review. Journal of Service Science and Management 11 (4), pp. 399–413, doi: 10.4236/jssm.2018.114028.
  • 35. Nguyen, M., Quach, S. & Thaichon, P. (2021) The effect of AI quality on customer experience and brand relationship. Journal of Customer Behaviour 21 (3), pp. 481–493, doi: 10.1002/cb.1974.
  • 36. Olan, F., Suklan, J., Arakpogun, E.O. & Robson, A. (2024) Advancing consumer behavior: The role of artificial intelligence technologies and knowledge sharing. IEEE Transactions on Engineering Management 71, pp. 13227– 13239, doi: 10.1109/TEM.2021.3083536.
  • 37. Pizzi, G., Scarpi, D. & Pantano, E. (2021) Artificial intelligence and the new forms of interaction: Who has the control when interacting with a chatbot? Journal of Business Research 129, pp. 878–890, doi: 10.1016/j. jbusres.2020.11.006.
  • 38. Poon, E.G, Lemak, C.H., Rojas, J.C., Guptill, J. & Classen, D. (2025) Adoption of artificial intelligence in healthcare: survey of health system priorities, successes, and challenges. Journal of the American Medical Informatics Association: JAMIA 32 (7), pp. 1093–1100, doi: 10.1093/ jamia/ocaf065.
  • 39. Ramirez, J.G.C. (2024) Natural language processing advancements: Breaking barriers in human-computer interaction. Journal of Artificial Intelligence General Science (JAIGS) 3 (1), pp. 31–39, doi: 10.60087/jaigs.v3i1.63.
  • 40. Rashid, M.M. (2010) A review of state-of-art on Kano model for research direction. International Journal of Engineering Science and Technology 2 (12), pp. 7481–7490.
  • 41. Rayhan, A., Kinzler, R. & Rayhan, R. (2023) Natural Language Processing: transforming how machines understand human language. Conference: The Development of Artificial General Intelligence, doi: 10.13140/RG.2.2.34900. 99200.
  • 42. Rosak-Szyrocka, J. (2024) The role of artificial intelligence in digital education. Scientific Papers of Silesian University of Technology, Organization and Management Series 195, pp. 477–499, doi: 10.29119/1641- 3466.2024.195.29.
  • 43. Rosak-Szyrocka, J., Żywiołek, J., Nayyar, A. & Naved, M. (2024) The Role of Sustainability and Artificial Intelligence in Education Improvement. Boca Raton: Taylor and Francis Group.
  • 44. Sahut, J-M. & Laroche, M. (2025) Using artificial intelligence (AI) to enhance customer experience and to develop strategic marketing: An integrative synthesis. Computers in Human Behavior 170, 108684, doi: 10.1016/j. chb.2025.108684.
  • 45. Saki, S. & Soori, M. (2025) Artificial intelligence, machine learning and deep learning in advanced transportation systems, a review. Multimodal Transportation In Press, Journal Pre-proof, 100242, doi: 10.1016/j.multra.2025.100242.
  • 46. Sarker, I.H. (2021) Machine learning: Algorithms, real-world applications and research directions. SN Computer Science 2 (3), 160, doi: 10.1007/s42979-021-00592-x.
  • 47. Sezgin, E. (2023) Artificial intelligence in healthcare: Complementing, not replacing, doctors and healthcare providers. Digital Health 9, doi: 10.1177/20552076231186520.
  • 48. Shen, X.X., Tan, K.C. & Xie, M. (2000) An integrated approach to innovative product development using Kano’s model and QFD. European Journal of Innovation Management 3 (2), pp. 91–99, doi: 10.1108/14601060010298435.
  • 49. Shwetank, A., Singh, R. & Rashmi, R. (2020) QFD and Fuzzy Kano model based approach for classification of aesthetic attributes of SUV car profile. Journal of Intelligent Manufacturing 31, pp. 271–284, doi: 10.1007/s10845-018- 1444-5.
  • 50. Silcox, C., Zimlichmann, E., Huber, K., Rowen, N., Saunders, R., Mcclellan, M., Kahn, C.N., Salzberg, C.A. & Bates, D.W. (2024) The potential for artificial intelligence to transform healthcare: perspectives from international health leaders. NPJ Digital Medicine 7 (1), 88, doi: 10.1038/s41746-024-01097-6.
  • 51. Skaria, S., Krishna, P.K.A., Anagha, K., James, S.K. & Nargeese, V. (2024) Natural language processing (NLP): Advancements, applications, and challenges. AIP Conference Proceedings 3134 (1), 020005, doi: 10.1063/5.0230441.
  • 52. Sobuj, M., Alam, M.A. & Zannat, A. (2022) Evaluation of face masks quality features using Kano model and unsupervised machine learning technique. Research Journal of Textile and Apparel 27 (4), pp. 560–572, doi: 10.1108/ RJTA-11-2021-0141.
  • 53. Syakbani, F.F. & Rahmiati, R. (2025) Application of Kano model for customer satisfaction analysis of health center service quality. Journal of Management and Administration Provision 5 (2), pp. 193–203, doi: 10.55885/jmap.v5i2.588.
  • 54. Szeliga-Kowalczyk, A. & Łabaza, A. (2016) The design of products/services which take customer’s preferences into account with the use of Kano method [in Polish]. Zeszyty Naukowe Wyższej Szkoły Ekonomiczno-Społecznej w Ostrołęce 22, pp. 297–309.
  • 55. Udgebe, F., Ebulue, O.R., Ebulue, Ch.Ch. & Ekesiobi, Ch. (2024) The role of artificial intelligence in healthcare: a systematic review of applications and challenges. International Medical Science Research Journal 4 (4), pp. 500– 508, doi: 10.51594/imsrj.v4i4.1052.
  • 56. Ulewicz, R. (2016) The use of Kano model for the classification of the elements of product quality. Systemy Wspomagania w Inżynierii Produkcji 3 (15), pp. 117–126.
  • 57. Wiśniewska, M. (2009) Rozpoznanie i zaspokojenie wymagań klienta z wykorzystaniem modelu Kano. Problemy Jakości 4, pp. 6–10.
  • 58. Wolniak, R. & Skotnicka, Z. (2008) Metody i narzędzia zarządzania jakością. Teoria i praktyka. Gliwice: Wydawnictwo Politechniki Śląskiej.
  • 59. Xiong, X. (2023) Classification of quality factors for Kano model based on online reviews: A case study of online medical care. Proceedings of the 2023 4th International Conference on Management Science and Engineering Management (ICMSEM 2023) 259, pp. 234–240, doi: 10.2991/978-94- 6463-256-9_24.
  • 60. Zawada, M. (2024) The impact of artificial intelligence on human resource management: challenges, opportunities, and future directions. System Safety: Human—Technical Facility—Environment 6 (1), pp. 239–250, doi: 10.2478/ czoto-2024-0026.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd0968c1-70ea-4e27-85c2-93cee9a7943e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.