PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Applying grain-size and compositional data analysis for interpretation of the Quaternary oxbow lake sedimentation processes: eastern Great Hungarian Plain

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Grain size distribution is one of the paleoenvironmental proxies that provide insight statistical distribution of size fractions within the sediments. Multivariate statistics have been used to investigate the depositional process from the grain size distribution. Still, the direct application of the standard multivariate methods is not straightforward and can yield misleading interpretations due to the compositional nature of the raw grain size data. This paper is a methodological framework for grain size data characterization through the centered log ratio transformation and euclidean data, coupled with principal component analysis, cluster analysis, and linear discriminant analysis to examine Quaternary sediments from Tovises bed in the southeast Great Hungarian Plain. These approaches provide statistically significant and sedimentologically interpretable results for both datasets. However, the details by which they supplemented the conceptual model were significantly different, and this discrepancy resulted in a different temporal model of the depositional history.
Czasopismo
Rocznik
Strony
83--93
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • University of Szeged, Department of Geology, 2-6 Egyetem u., H-6722, Szeged, Hungary
  • University of Szeged, Department of Geology, 2-6 Egyetem u., H-6722, Szeged, Hungary
  • University of Szeged, Department of Geology, 2-6 Egyetem u., H-6722, Szeged, Hungary
  • University of Szeged, Department of Geology, 2-6 Egyetem u., H-6722, Szeged, Hungary
autor
  • University of Szeged, Department of Geology, 2-6 Egyetem u., H-6722, Szeged, Hungary
Bibliografia
  • Agterberg, F.P., 1974. Geomathematics. Elsevier Publ. Co, 125-148 pp.
  • Aitchison, J., 1982. The Statistical Analysis of Compositional Data. Journal of the Royal Statistical Society. Series B (Methodological) 44 (2), 139-177.
  • Aitchison, J., 1983. Principal component analysis of compositionaldata. Biometrika 70 (1), 57-65.
  • Aitchison, J., 1986. The Statistical Analysis of Compositional Data: Monographs on Statistics and Applied Probability. Chapman & Hall Ltd. London 436.
  • Aitchison, J., 1992. On criteria for measures of compositional difference. Mathematical Geology 24 (4), 365-379. Aitchison, J., Barceló-Vidal, C., Pawlowsky-Glahn, V., 2002. Some comments on compositional data analysis in archaeometry, in particular the fallacies in Tangri and Wright's dismissal of log ratio analysis. Archaeometry 44 (2), 295-304.
  • Allen, J.R.L., 1970. Physical Processes of Sedimentation: An Introduction. Earth Science Series. Allen & Unwin Ltd., London, 248 pp.
  • Ashley, G.M., 1978. Interpretation of polymodal sediments. Journal of Geology 86, 411-421.
  • Blake, D.H., Ollier, C.D., 1971. Alluvial plains of the Fly River, Papua. Zeitschrift fur Geomorphologie 12, 1-17.
  • Blott, S.J., Pye, K., 2001. Gradistat: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surface Processes and Landforms 26 (11), 1237-1248.
  • Boulay, S., Colin, C., Trentesaux, A., Pluquet, F., Bertaux, J., Blamart, D., Buehring, C., Wang, P., 2003. Mineralogy and Sedimentology of Pleistocene Sediment in the South China Sea (ODP Site 1144). Proceedings of the Ocean Drilling Program: Scientific Results 184.
  • Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V., 2006. Compositional data analysis in the geosciences: from theory to practice. Geological Society, London, Special Publications 264, p. 212.
  • Davis, J.C., 2002. Statistics and Data Analysis in Geology, 3ed. John Wiley & Sons Inc., New York 550.
  • Donato, S.V., Reinhardt, E.G., Boyce, J.I., Pilarczyk, J.E, Jupp, B.P., 2009. Particle-Size Distribution of Inferred Tsunami Deposits in Sur Lagoon, Sultanate of Oman. Marine Geology 257 (1-4), 54-64.
  • East, T.J., 1985. A factor analytic approach to the identification of geomorphic processes from soil particle size characteristics. Earth Surface Processes and Landforms 10, 441-463.
  • East, T.J., 1987. A multivariate analysis of the particle size characteristics of regolith in a catchment on the Darling Downs, Australia. Catena 14, 101-118.
  • Egozcue, J.J., Pawlowsky-Glahn, V., 2005. Groups of Parts and Their Balances in Compositional Data Analysis. Mathematical Geology 37 (7), 795-828.
  • Egozcue, J.J., Pawlowsky-Glahn, V., 2016. What are compositional data and how should they be analyzed? Boletin de Estadństica e Investigacion Operativa 32 (1), 5-29.
  • Egozcue, J.J., Pawlowsky-Glahn, V., Gloor, G. B., 2018. Linear association in compositional data analysis. Austrian Journal of Statistics 47 (1), 3-31.
  • Feldman, R., Sanger, J., 2007. The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press.
  • Fisher, R.A., 1936. The use of multiple measurements in taxonomic problems. Human Genetic 7.2, 179-188.
  • Flemming, B.W., 1988. Process and Pattern of Sediment Mixing in a Microtidal Coastal Lagoon along the West Coast of South Africa. In: de Boer, P.L., van Gelder, A., Nio, S.D. (Eds), Tide-Influenced Sedimentary Environments and Facies 275-288.
  • Flood, R.P., Orford, J.D., McKinley, J.M., Roberson, S., 2015. Effective Grain Size Distribution Analysis for Interpretation of TidalDeltaic Facies: West Bengal Sundarbans. Sedimentary Geology 318, 58-74.
  • Folk, R.L., Ward, W.C., 1957. Brazos River Bar: A Study in the Significance of Grain Size Parameters. Journal of Sedimentary Petrology 27 (1), 3-26.
  • Fournier, J., Gallon, R. K., Paris, R., 2014. G2Sd: a new R package for the statistical analysis of unconsolidated sediments. Geomorphologie: relief, processus, environnement 1, 73-78.
  • Gordon, A.D., 1999. Classification. Second Edition. Chapman & Hall, London, 272 pp.
  • Greenacre, M., Grunsky, E., Bacon-Shone, J., 2019. A comparison of amalgamation log ratio balances and isometric log ratio balances in compositional data analysis. In revision at Computers & Geosciences, 1-38.
  • He, Y., Zhao, C., Song, M., Liu, W., Chen, F., Zhang, D., Liu, Z., 2015. Onset of Frequent Dust Storms in Northern China at ~AD 1100. Scientific Reports 5, 1-7.
  • Katra, I., Yizhaq, H., 2017. Intensity and degree of segregation in bimodal and multimodal grain size distributions. Aeolian Research 27, 23-34. https://doi.org/10.1016/j.aeolia.2017.05.002.
  • Konert, M., Vandenberghe, J., 1997. Comparison of Laser Grain Size with Pipette and Sieve Analysis. Sedimentology 44, 523-535.
  • McLaren, P., Hill, S.H., Bowles, D., 2007. Deriving Transport Pathways in a Sediment Trend Analysis (STA). Sedimentary Geology 202 (3), 489-498.
  • Mishra, S., Datta-Gupta, A., 2018. Applied Statistical Modeling and Data Analytics. A Practical Guide for the Petroleum Geosciences. Elsevier Inc. 97-118.
  • Palazón, L., Navas, A., 2017. Variability in Source Sediment Contributions by Applying Different Statistic Test for a Pyrenean Catchment. Journal of Environmental Management 194, 42-53.
  • Passega, R., 1957. Texture as Characteristic of Clastic Deposition 41 (9) 1952-1984.
  • Passega, R., 1964. Grain Size Representation by CM Patterns as a Geologic Tool. Journal of Sedimentary Research 34 (4), 830-847.
  • Passega, R., 1977. Significance of CM Diagrams of Sediments Deposited by Suspensions. Sedimentology 24 (5), 723-733.
  • Pawlowsky-Glahn, V., Egozcue, J.J., 2001. Geometric approach to statistical analysis on the simplex. Stochastic Environmental Research and Risk Assessment 15 (5), 384-398.
  • Pawlowsky-Glahn V., Buccianti A., 2011. Compositional data analysis theory and applications. Wiley, New York, 400 pp.
  • Pfitzner, D., Richard, L., David, P., 2009. Characterization and evaluation of similarity measures for pairs of clusterings. Knowledge and Information Systems. Springer 19 (3), 361-394.
  • Reading, H.G., 1996. Sedimentary Environments: Processes, Facies and Stratigraphy. Sedimentary Environments: Processes, Facies and Stratigraphy, 688 pp.
  • Rowland, J.C., Dietrich, W.E., 2006. The Evolution of a Tie Channel. River, Coastal and Estuarine Morphodynamics: RCEM 2005 -
  • Proceedings of the 4th IAHR Symposium on River, Coastal and Estuarine Morphodynamics 2 (Mossa 1996), 725-736.
  • Sarnthein, M., Tetzlaff, G., Koopmann, B., Wolter, K., Pflaumann, U., 1981. Glacial and Interglacial Wind Regimes over the Eastern Subtropical Atlantic and North-West Africa. Nature 293 (5829), 193-196.
  • Sumegi, P., Vissi, E., 1991. A pocsaji lap kialakulasa es fejlodestortenete. Calandrella 5, 15-27.
  • Sumegi, P., 1993. Sedimentary geological and stratigraphical analysis made on the material of the Upper Paleolithic Settlement at Jaszfelsoszentgyorgy-Szunyogos. Tisicum 8, 63-70.
  • Szilagyi, S.Sz., Geiger, J., 2012. Sedimentological study of the Szoreg-1 reservoir (Algyo field, Hungary): a combination of traditional and 3D sedimentological approaches. Geologia Croatica 65/1, 77-90.
  • Szoor, Gy., Sumegi, P., Balazs, E., 1991. Sedimentological and geochemical analysis of Upper Pleistocene paleosols of the Hajdusag region, NE Hungary. In: Pecsi, M., Schweitzer, F. (Eds), Quaternary environment in Hungary, 26. Akademiai Kiadó, Budapest, 47-60.
  • Tsagris, M., Preston, S., Wood, A.T., 2016. Improved classification for compositional data using the a-transformation. Journal of classification 33 (2), 243-261.
  • Udden, J.A., 1914. Mechanical Composition of Clastic Sediments. Geological Society of America Bulletin 25, 655-744.
  • Visher, G.S., 1969. Grain Size Distributions and Depositional Processes. SEPM Journal of Sedimentary Research 39, 1074-1106.
  • Ward, J.H., 1963. Hierarchical Grouping to Optimize an Objective Function 58 (301), 236-244.
  • Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediments. The journal of geology 30 (5), 377-392.
  • Zhang, X., Zhou, A., Wang, X., Song, M., Zhao, Y., Xie, H., Russell, J.M., Chen, F., 2018. Unmixing Grain-Size Distributions in Lake Sediments: A New Method of Endmember Modeling Using Hierarchical Clustering. Quaternary Research (United States) 89 (1), 365-373.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd05bc29-6879-41f9-8efc-214308f60c57
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.