Identyfikatory
Warianty tytułu
Projektowanie położenia maszyn na hali produkcyjnej wspomagane wybranymi narzędziami CAx i sztuczną inteligencją
Języki publikacji
Abstrakty
The paper presents production plant layout planning techniques on the basis of selected Digital Tools (DTs) utilization including generative artificial intelligence (AI). The authors studied possible techniques that can be used in production plant planning and researched their implementations on the basis of three defined production cells and lists of machine tools assigned to each cell. The usage of 2D and 3D Computer-Aided Design (CAD) software tools such as LibreCAD and FreeCAD was studied. The CAD software was applied for the design of layout using traditional CAD modelling procedures and also by the AI support. Moreover, MatlabTM software usage was presented as an alternative planning solution. It demonstrated opportunities resulting from automated code creation in the ChatGPTTM. The ChatGPTTM and Visual Studio CodeTM were applied as tools supporting the AI-assisted layout design methodology. The performed study revealed that artificial intelligence support and utilization of DTs may contribute to the production plant planning process by the collaborative implementation of various software DTs.
Artykuł przedstawia proces projektowania rozmieszczenia maszyn na hali produkcyjnej, w którym wykorzystuje się wybrane programy komputerowe oraz generatywną sztuczną inteligencję (SI). Autorzy przedstawili możliwe techniki, które mogą być wykorzystane podczas projektowania oraz poddali analizie ich zastosowanie na podstawie trzech gniazd produkcyjnych z uwzględnieniem listy obrabiarek. Zastosowano oprogramowanie CAD 2D oraz 3D (LibreCAD i FreeCAD). Oprogramowanie CAD zastosowano w procesie projektowania położenia modeli maszyn–zarówno w sposób tradycyjny jak i uwzględniający sztuczną inteligencję. Przedstawiono także alternatywne wykorzystanie programu MatlabTM. ChatGPTTM oraz program Visual Studio CodeTM wykorzystano jako narzędzia wspomagające projektowanie położenia maszyn przez wykorzystanie sztucznej inteligencji. Oprogramowanie MatlabTM umożliwiło zautomatyzowane opracowywanie wykresów przedstawiających położenie maszyn. Przedstawiona analiza uwidoczniła możliwości zintegrowanego wykorzystania różnych narzędzi w procesie projektowania ich rozmieszczenia na hali produkcyjnej. Dodatkowo zaproponowano w artykule wybrane parametry opisujące ilościowo proces projektowania rozmieszczenia maszyn na hali produkcyjnej.
Rocznik
Tom
Strony
89--100
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
- The Department of Manufacturing Processes and Production Engineering, Rzeszów University of Technology
autor
- The Department of Manufacturing Processes and Production Engineering, Rzeszów University of Technology
Bibliografia
- 1. Autodesk Factory Design(TM). (2024). Make your next move toward modernized factory design. Retrieved December 12, 2024, from https://www.autodesk.com/solutions/factory-design
- 2. Bi, S., Shao, L., Zheng, J., & Yang, R. (2024). Workshop layout optimization method based on sparrow search algorithm: A new approach. Journal of Industrial and Production Engineering, 41(4), 324–343. https://doi.org/10.1080/21681015.2024.2302630
- 3. CampusAI. (2025). CampusAI Human + AI Collaboration. Retrieved March 12, 2025, from https://campusai.pl
- 4. Chao, L., Shuang, L., Wang, S., & Cai, B. (2015). Research on automatic layout planning and performance analysis system of production line based on simulation. In Proceedings of China Modern Logistics Engineering. Lecture Notes in Electrical Engineering (vol. 286, pp. 455-462). Springer. https://doi.org/10.1007/978-3-662-44674-4_42
- 5. ChatGPT(TM). (2024). ChatGPT by OpenAI. Retrieved December 21, 2024, from https://chatgpt.com
- 6. ChatGPT(TM). (2025a). Chat in ChatGPT(TM) no. 1. Retrieved March 12, 2025, from https://chatgpt.com/share/67ac7196-d1b0-800c-84e0-11d54e80af84
- 7. ChatGPT(TM). (2025b). Chat in ChatGPT(TM) no. 2. Retrieved March 12, 2025, from https://chatgpt.com/share/67ac7397-eec0-800c-ad63-9357695e9e4e
- 8. ChatGPT(TM). (2025c). Chat in ChatGPT(TM) no. 3. Retrieved March 12, 2025, from https://chatgpt.com/share/67ac7592-80f0-800c-89b0-01827945a13a
- 9. Dassault Systèmes. (2024). DELMIA 3D Virtual Factory. Retrieved December 12, 2025, from https://discover.3ds.com/pl/delmia-digital-manufacturing-software
- 10. Disselkamp, J.-P., Kürpick, D., Schütte, B., Hovemann, A., & Dumitrescu, R. (2024). Use cases of generative AI in factory planning: potential and challenges. In J. Malmqvist, M. Candi, R. J. Saemundsson, F. Bystrom, & O. Isaksson (Eds.), Proceedings of NordDesign 2024 (pp. 1-10). Fraunhofer IEM. https://doi.org/10.35199/NORDDESIGN2024.22
- 11. Elbasheer, M., Longo, F., Nicoletti, L., Padovano, A., Solina, V., & Vetrano, M. (2022). Applications of ML/AI for decision-intensive tasks in production planning and control. Procedia Computer Science, 200, 1903–1912. https://doi.org/10.1016/j.procs.2022.01.391
- 12. Fang-ying, C., Jian-feng, L., & Hao, Z. (2010). Factory planning and digital factory. In 2010 International Conference on Audio, Language and Image Processing (pp. 499–502). IEEE. https://doi.org/10.1109/ICALIP.2010.5684524
- 13. FreeCAD. (2024). FreeCAD Your own 3D parametric modeller. Retrieved December 12, 2024, from https://www.freecad.org/
- 14. Janecki, L., Reh, D., & Arlinghaus, J. C. (2024). Challenges of quality assurance in early planning and ramp up of production facilities—potentials of planning automation via virtual engineering. Procedia Computer Science, 232, 2498–2507. https://doi.org/10.1016/j.procs.2024.02.068
- 15. Lenin, N., Siva Kumar, M., Islam, M. N., & Ravindran, D. (2013). Multi-objective optimization in single-row layout design using a genetic algorithm. The International Journal of Advanced Manufacturing Technology, 67(5–8), 1777–1790. https://doi.org/10.1007/s00170-012-4608-z
- 16. Li, B. h., Hou, B. c., Yu, W. t., Lu, X. b., & Yang, C. w. (2017). Applications of artificial intelligence in intelligent manufacturing: a review. Frontiers of Information Technology & Electronic Engineering, 18, 86–96. https://doi.org/10.1631/FITEE.1601885
- 17. LibreCAD. (2024). LibreCAD. Open Source 2D-CAD. Retrieved December 21, 2024, from https://librecad.org
- 18. Lin, M.-H., & Fu, L.-C. (2001). A virtual factory based approach to on-line simulation and scheduling for an FMS and a case study. Journal of Intelligent Manufacturing, 12, 269–279. https://doi.org/10.1023/A:1011201009821
- 19. Lindskog, E., Vallhagen, J., Berglund, J., & Johansson, B. (2016). Improving lean design of production systems by visualization support. Procedia CIRP, 41, 602–607. https://doi.org/10.1016/j.procir.2016.01.004
- 20. Matlab(TM). (2024). Welcome to Matlab. Retrieved December 21, 2024, from https://matlab.mathworks.com
- 21. Mengzhen, X., Yong, W., Haigen, Y., Lei, W., Longbao, H., Hongyan, Y., Wenting, X., & Jun, M. (2019). Simulation and optimization of intelligent workshop layout and logistics transportation by system layout planning combined with Em-plant. In 2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS) (pp. 663–667). https://doi.org/10.1109/ICSESS47205.2019.9040788
- 22. Python. (2024). Python. Retrieved December 21, 2024, from https://www.python.org
- 23. Schäfer, L., Klenk, F., Maier, T., Zehner, M., Peukert, S., Linzbach, R., Treiber, T., & Lanza, G. (2024). A systematic approach for simulation-based dimensioning of production systems during the concept phase of factory planning. Production Engineering, 18, 813-825. https://doi.org/10.1007/s11740-024-01273-3
- 24. Siemens. (2024). TECNOMATIX Plant Simulation. Retrieved December 12, 2024, from https://plm.sw.siemens.com/pl-PL/tecnomatix/plant-simulation-software
- 25. Tearwattanarattikal, P., Namphacharoen, S., & Chamrasporn, C. (2008). Using ProModel as a simulation tools to assist plant layout design and planning: Case study plastic packaging factory. Songklanakarin Journal of Science and Technology, 30(1), 117–123.
- 26. Terkaj, W., Tolio, T., & Urgo, M. (2015). A virtual factory approach for in situ simulation to support production and maintenance planning. CIRP Annals, 64(1), 451–454. https://doi.org/10.1016/j.cirp.2015.04.121
- 27. Vernadat, F. (2020). Enterprise modelling: Research review and outlook. Computers in Industry, 122, Article 103265. https://doi.org/10.1016/j.compind.2020.103265
- 28. Visual Studio Code(TM). (2024). Your code editor. Redefined with AI. Retrieved December 21, 2024, from https://code.visualstudio.com
- 29. Wan, J., Li, X., Dai, H. -N., Kusiak, A., Martínez-García, M., & Li, D. (2021). Artificial-intelligence-driven customized manufacturing factory: Key technologies, applications, and challenges, In Proceedings of the IEEE (vol. 109, no. 4, pp. 377–398). https://doi.org/10.1109/JPROC.2020.3034808
- 30. Wang, H., Wang, C., Liu, Q., Zhang, X., Liu, M., Ma, Y., Yan, F., & Shen, W. (2024). A data and knowledge driven autonomous intelligent manufacturing system for intelligent factories, Journal of Manufacturing Systems, 74, 512–526, https://doi.org/10.1016/j.jmsy.2024.04.011
- 31. Zhang, Z., Wang, X., Wang, X., Cui, F., & Cheng, H. (2019). A simulation-based approach for plant layout design and production planning. Journal of Ambient Intelligence and Humanized Computing, 10(3), 1217–1230. https://doi.org/10.1007/s12652-018-0687-5
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd055fad-cc69-4c18-9f1e-f628f2ec7210
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.