PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Theoretical Study of Polyethylene Glycol Polynitrates as Potential Highly Energetic Plasticizers for Propellants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polyethylene glycol polynitrates may be used as plasticizers in propellants. In this study, ten derivatives of ethylene glycol dinitrate were investigated using the density functional theory method. The fitted densities (ρ’exp.) were obtained and were very close to the experimental values. The detonation properties were predicted using the modified Kamlet-Jacobs equations and the specific impulse (Is) was evaluated according to the largest exothermic principle. A new indicator, K = Is · ρ’exp., is proposed to evaluate the energetic characteristics of the plasticizers. Thermal stability is discussed by calculating the bond dissociation energies or energy barriers. The O−NO2 bond is the trigger bond for all of the compounds studied. Considering the energetic properties and stability, diethylene glycol tetranitrate, triethylene glycol hexanitrate, tetraethylene glycol octanitrate, pentaethylene glycol decanitrate and hexaethylene glycol dodecanitrate are potential energetic plasticizers for solid propellants. The influences of the −O−CH2−CH2− and −O−CH(ONO2)−CH(ONO2)− groups are also discussed, which will be helpful for the design of new highly energetic plasticizers by modifying the structures as required.
Rocznik
Strony
194--215
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Computation Institute for Molecules and Materials, Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, China
autor
  • Computation Institute for Molecules and Materials, Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, China
  • Computation Institute for Molecules and Materials, Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, China
autor
  • Computation Institute for Molecules and Materials, Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, China
Bibliografia
  • [1] Peng, P.G.; Liu, P.L.; Zhang, R.; Li, Y.N.; He, N.C.; Xing, Y.M. The Properties and Principle of the Propellants. National University of Defense Technology Press, Changsha, People’s Republic of China, 1987; ISBN 9787810996396.
  • [2] Zheng, J.; Hou, L.F.; Yang, Z.X. The Progress and Prospects of High Energy Propellants. J. Solid Rocket Tech. 2001, 24: 28-34.
  • [3] Pang, A.M.; Zheng, J. Prospect of the Research and Development of High Energy Solid Propellant Technology. J. Solid Rocket Tech. 2004, 27: 289-293.
  • [4] Kumari, D.; Balakshe, R.; Banerjee, S.; Singh, H. Energetic Plasticizers for Gun and Rocket Propellants. Rev. J. Chem. 2012, 2: 240-262.
  • [5] Ji, Y.P.; Li, P.R.; Wang, W.; Lan, Y.; Ding, F.A. A Review of Recent Advance of Energetic Plasticizers. (in Chinese) Chin. J. Explos. Propellants (Huozhayao Xuebao) 2005, 28: 47-51.
  • [6] Brand, J.C.D.; Cawthon, T.M. The Vibrational Spectrum of Methyl Nitrate. J. Am. Chem. Soc. 1955, 77: 319-323.
  • [7] Waring, C.E.; Krastins, G. Kinetics and Mechanism of the Thermal Decomposition of Nitroglycerin. J. Phys. Chem. 1970, 74: 999-1006.
  • [8] Li, G.W. Study on the Explosion Properties of Nitrate Plasticized High Energy Propellant. J. Solid Rocket Technol. 2000, 23: 44-48.
  • [9] Wang, Q.F.; Shi, F.; Mi, Z.T.; Zhang, X.W.; Wang, L. Review on Green Synthesis of Nitrate Esters. (in Chinese) Chin. J. Energ. Mater. (Hanneng Cailiao) 2007, 15: 416-420.
  • [10] Chen, P.; Zhao, F.Q.; Luo, Y.; Hu, R.Z.; Li, S.W.; Gao, Y. Thermal Decomposition Kinetics of Triethylene Glycol Dinitrate. Chin. J. Chem. 2009, 27: 1871-1878.
  • [11] Oxley, J.C.; Smith, J.L.; Brady, IV J.E.; Brown, A.C. Characterization and Analysis of Tetranitrate Esters. Propellants Explos. Pyrotech. 2012, 37: 24-39.
  • [12] Song, X.L.; Wang, Y.; Wang, J.Y.; Zhang, J.L.; Jiao, Q. Synthesis, Characterization of 1,2,3,4-Erythrityl Tetranitrate. (in Chinese) Chin. J. Energ. Mater. (Hanneng Cailiao) 2014, 22: 458-461.
  • [13] Ding, L.; Zheng, C.M.; Zhai, G.H.; Wang, Q.L. Interaction of Stability and Nitric Acid Ester (NG-NC) of Propellant. J. Solid Rocket Technol. 2014, 37: 525-529.
  • [14] Akutsu, Y.; Che, R.; Tamura, M.J. Calculations of Heats of Formation for Nitramines and Alkyl Nitrates with PM3 and MM2. J. Energ. Mater. 1993, 11: 195-203.
  • [15] Gong, X.D.; Wang, J.; Xiao, H.M. PM3 Study on Geometries, Heats of Formation and Electronic Structures for Nitric Esters. Chem. J. Chin. Univ. 1994, 15: 1817-1820.
  • [16] Gong, X.D.; Xiao, H.M.; van de Graaf, B. Ab Initio Studies on Four Alkyl Nitric Esters. J. Mol. Struct.: THEOCHEM. 1997, 393: 207-212.
  • [17] Gong, X.D.; Xiao, H.M. Ab Initio Studies of Molecular Geometries, Electronic Structures and Infrared Spectra of the Substituted Derivatives of Methyl Nitrate. J. Mol. Struct.: THEOCHEM. 1999, 488: 179-185.
  • [18] Bunte, S.W.; Sun, H. Molecular Modeling of Energetic Materials: The Parameterization and Validation of Nitrate Esters in the COMPASS Force Field. J. Phys. Chem. B. 2000, 104: 2477-2489.
  • [19] Gong, X.D.; Xiao, H.M. Ab initio and Density Functional Methods Studies on the Conformations and Thermodynamic Properties of Propyl Nitrate. J. Mol. Struct.: THEOCHEM. 2000, 498: 181-190.
  • [20] Gong, X.D.; Xiao, H.M. Studies on the Molecular Structures, Vibrational Spectra and Thermodynamic Properties of Organic Nitrates Using Density Functional Theory and Ab Initio Methods. J. Mol. Struct.: THEOCHEM. 2001, 572: 213-221.
  • [21] Türker, L.; Erkoç, Ş. Density Functional Theory Calculations for [C2H4N2O6](n) (n = 0, +1, −1). J. Hazard. Mater. A 2006, 136: 164-169.
  • [22] Zeng, X.L.; Chen, W.H.; Liu, J.C.; Kan, J.L. A Theoretical Study of Five Nitrates: Electronic Structure and Bond Dissociation Energies. J. Mol. Struct.: THEOCHEM. 2007, 810: 4-51.
  • [23] Li, M.M.; Wang, G.X.; Guo, X.D.; Song, H.C. Theoretical Study on the Vibrational Spectra, Thermodynamic Properties, Density, Detonation Properties and Pyrolysis Mechanism of Four Trinitrate Esters. J. Mol. Struct.: THEOCHEM. 2009, 100: 90-95.
  • [24] Wang, G.X.; Gong, X.D.; Du, H.C.; Liu, Y.; Xiao, H.M. Theoretical Prediction of Properties of Aliphatic Polynitrates. J. Phys. Chem. A 2011, 115: 795-804.
  • [25] Liu, D.M.; Xiao, J.J.; Zhu, W.; Xiao, H.M. Sensitivity Criterion and Mechanical Properties Prediction of PETN Crystals at Different Temperatures by Molecular Dynamics Simulation. (in Chinese) Chin. J. Energ. Mater. (Hanneng Cailiao) 2013, 2: 563-569.
  • [26] Xiao, H.M.; Xu, X.J.; Qiu, L. Theoretical Design of High Energy Density Materials. Beijing: Science Press, 2008; ISBN 9787030206190.
  • [27] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, J.T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A. Gaussian 03. Gaussian, Inc., Pittsburgh PA, 2003; ISBN O-9636769-6-2.
  • [28] Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37: 785-789.
  • [29] Becke, A.D. Density-functional Thermochemistry, II. The Effect of the Perdew-Wang Generalized-gradient Correlation Correction. J. Chem. Phys. 1992, 97: 9173-9177.
  • [30] Hariharan, P.C.; Pople, J.A. Influence of Polarization Functions on MO Hydrogenation Energies. Theor. Chim. Acta. 1973, 28: 213-222.
  • [31] Kamlet, M.J.; Jacobs, S.J. Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C-H-N-O Explosives. J. Chem. Phys. 1968, 48: 23-35.
  • [32] Zhang, X.H.; Yun, Z.H. Explosive Chemistry. National Defence Industry Press, Beijing, People’s Republic of China, 1989; ISBN 9787118076479.
  • [33] Stewart, J.J.P. Optimization of Parameters for Semi-Empirical Methods I-Method. J. Comput. Chem. 1989, 10: 209-220.
  • [34] Zhang, J.; Xiao, H.M. Computational Studies on the Infrared Vibrational Spectra, Thermodynamic Properties, Detonation Properties and Pyrolysis Mechanism of Octanitrocubane. J. Chem. Phys. 2002, 116: 10674-10683.
  • [35] Chen, Z.X.; Xiao, J.M.; Xiao, H.M.; Chiu, Y.N. Studies on Heats of Formation for Tetrazole Derivatives with Density Functional Theory B3LYP Method. J. Phys. Chem. A. 1999, 103: 8062-8066.
  • [36] Xu, X.J.; Xiao, H.M.; Ju, X.H.; Gong, X.D.; Zhu, W.H. Computational Studies on Polynitrohexaazaadmantanes as Potential High Energy Density Materials (HEDMs). J. Phys. Chem. A 2006, 110: 5929-5933.
  • [37] Xu, X.J.; Xiao, H.M.; Gong, X.D.; Ju, X.H.; Chen, Z.X. Theoretical Studies on the Vibrational Spectra, Thermodynamic Properties, Detonation Properties and Pyrolysis Mechanisms for Polynitroadamantanes. J. Phys. Chem. A 2005, 109: 11268-11274.
  • [38] Qiu, L.; Xiao, H.M.; Gong, X.D.; Ju, X.H.; Zhu, W. Theoretical Studies on the Structures, Thermodynamic Properties, Detonation Properties, and Pyrolysis Mechanisms of Spiro Nitramines. J. Phys. Chem. A 2006, 110: 3797-3807.
  • [39] Wang, G.X.; Shi, C.H.; Gong, X.D.; Xiao, H.M. Theoretical Investigation on Structures, Density, Detonation Properties and Pyrolysis Mechanism of the Derivatives of HNS. J. Phys. Chem. A 2009, 113: 1318-1326.
  • [40] Qiu, L.M.; Gong, X.D.; Wang, G.X.; Zheng, J.; Xiao, H.M. Looking for High Energy Density Compounds among 1,3-Bishomopentaprismane Derivatives with –CN, –NC, and –ONO2 groups. J. Phys. Chem. A 2009, 113: 2607-2614.
  • [41] Wang, G.X.; Gong, X.D.; Liu, Y.; Du, H.C.; Xu, X.J.; Xiao, H.M. Theoretical Studies on the Structures, Density, Detonation Properties, Pyrolysis Mechanisms and Impact Sensitivity of Nitro Derivatives of Toluenes. J. Hazard. Mater. 2010, 177: 703-710.
  • [42] Wang, G.X.; Gong, X.D.; Liu, Y.; Du, H.C.; Xu, X.J.; Xiao, H.M. Looking for High Energy Density Compounds Applicable for Propellant among the Derivatives of DPO with –N3, –ONO2, and –NNO2 Groups. J. Comput. Chem. 2011, 32: 943-952.
  • [43] Qiu, L.; Xiao, H.M.; Gong, X.D.; Ju, X.H.; Zhu, W. Crystal Density Predictions for Nitramines Based on Quantum Chemistry. J. Hazard. Mater. 2007, 141: 280-288.
  • [44] Wang, G.X.; Gong, X.D.; Liu, Y.; Du, H.C.; Xiao, H.M. Prediction of Crystalline Densities of Polynitro Arenes for Estimation of their Detonation Performance Based on Quantum Chemistry. J. Mol. Struct.: THEOCHEM 2010, 953: 163-169.
  • [45] Politzer, P.; Murray, J.S.; Grice, M.E.; Sjoberg, P. Chemistry of Energetic Materials. Academic Press, San Diego, CA, 1991; ISBN 9780123746467.
  • [46 Liu, Y.F.; An, H.M.; Yang, R.J. Combustion Properties of Nitroamine Monopropellants. (in Chinese) Chin. J. Explos. Propellants (Huozhayao Xuebao) 2001, 4: 48-49.
  • [47] Karfunkel, H.R.; Gdanitz, R.J. Ab Initio Prediction of Possible Crystal Structures for General Organic Molecules. J. Comp. Chem. 1992, 1: 1171-1183.
  • [48] Pospíšil, M.; Vávra, P.; Concha, M.C.; Murray, J.S.; Politzer, P. A Possible Crystal Volume Factor in the Impact Sensitivities of Some Energetic Compounds. J. Mol. Model. 2010, 16: 895-90.
  • [49] Kamlet, M.J.; Adolph, H.G. The Relationship of Impact Sensitivity with Structure of Organic High Explosives. Propellants Explos. Pyrotech. 1979, 4: 30-34.
  • [50] Zhang, X.F. Performance Manual of Raw and Processed Materials of Overseas Explosives. Beijing: Weapon Industry Press, 1991; ISBN 9787801726353.
  • [51] Politzer, P.; Murray, J.S. High Performance, Low Sensitivity: Conflicting or Compatible? Propellants Explos. Pyrotech. 2016, 41: 414-425.
  • [52] Mulliken, R.S. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23: 1833-1840.
  • [53] Zhang, L.Y.; Liu, H.; Zheng, W.F.; Gao, P.; Pan, R.M. DFT Study on the Structure and Properties of Difluoramino Derivatives of CL-20. (in Chinese) Explos. Mater. 2018, 47: 7-13.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd00b3ed-a5d1-4406-88c9-f755f11e520b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.