PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication of heterojunction MnTiO3–TiO2-decorated carbon nanofibers via electrospinning as an effective multifunctional photocatalyst

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we successfully synthesized heterojunction manganese titanate/titanate nanoparticles (MnTiO3–TiO2 NPs)-decorated carbon nanofibers (CNFs) employing the electrospinning process. The morphology, crystallinity, and chemical composition of the MnTiO3–TiO2-decorated CNFs is characterized via SEM, FESEM, STEM, TEM EDX, and XRD techniques. The synthesized nanocomposite exhibits good performance for photodegradation of methylene blue (MB) dye and hydrolysis of ammonia–borane complex for hydrogen releasing experiment in a batch reactor under visible light. A mathematical model was developed to predict the photocatalytic activity of the produced nanocomposite with various parameters. The operational parameters include the effect of the initial concentration, catalyst dosage, light intensity, and reaction temperature, which are studied to validate the mathematical model. The reaction rate constant of MB photodegradation is found to be 0.0153 min−1 for an initial MB concentration of 5 mg·L−1 with a catalytic dosage of 200 mg·L−1 at a reaction temperature of 25°C under a light intensity of 25 W·m−2. Similarly, the H2 generation employing TiO2@CNFs and MnTiO3–TiO2@CNFs under visible light irradiation is observed to be 0.31 mol and 2.95 mol, respectively, corresponding to an exposure of 10 min. We also demonstrated that the yield of hydrogen employing MnTiO3–TiO2@CNFs under visible light increases to 2.95 mol compared with 1.51 mol in darkness. Finally, comparisons were made between the experimental and model-predicted values of the reaction rate constant and final concentrations. Theoretical and experimental data of photocatalytic activity are found to be in good agreement for MnTiO3–TiO2@CNFs.
Wydawca
Rocznik
Strony
289--305
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
autor
  • Deparatement of Chemical Engineering, Jazan University, Jazan, Saudi Arabia
Bibliografia
  • [1] Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM. Photocatalytic degradation pathway of methylene blue in water. Appl Catal B: Environ. 2001;31:145–57.
  • [2] Ràfols C, Barceló D. Determination of mono-and disulphonated azo dyes by liquid chromatography–atmospheric pressure ionization mass spectrometry. J Chromatogr A. 1997;777:177–92.
  • [3] Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A: Gen. 2009;359:25–40.
  • [4] Chacko DK, Madhavan AA, Arun T, Thomas S, Anjusree G, Deepak T, et al. Ultrafine TiO2 nanofibers for photocatalysis. RSC Adv. 2013;3:24858–62.
  • [5] Reddy KR, Gomes VG, Hassan M. Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Mater Res Express. 2014;1:015012.
  • [6] Reddy KR, Hassan M, Gomes VG. Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Catal A: Gen. 2015;489:1–16.
  • [7] Nakhowong R. Fabrication and characterization of Mn-TiO3 nanofibers by sol–gel assisted electrospinning. Mater Lett. 2015;161:468–70.
  • [8] Zhou GW, Kang YS. Synthesis and structural properties of manganese titanate MnTiO3 nanoparticle. Mater Sci Eng: C. 2004;24:71–4.
  • [9] García-Muñoz P, Pliego G, Zazo JA, Bahamonde A, Casas JA. Ilmenite (FeTiO3) as low cost catalyst for advanced oxidation processes. J Environ Chem Eng. 2016;4:542–8.
  • [10] Zazo JA, García-Muñoz P, Pliego G, Silveira JE, Jaffe P, Casas JA. Selective reduction of nitrate to N2 using ilmenite as a low cost photo-catalyst. Appl Catal B: Environ. 2020;273:118930.
  • [11] Ghaemifar S, Rahimi-Nasrabadi M, Pourmasud S, Eghbali-Arani M, Behpour M, Sobhani-Nasab A. Preparation and characterization of MnTiO3, FeTiO3, and CoTiO3 nanoparticles and investigation various applications: a review. J Mater Sci: Mater Electron. 2020;31:6511–24.
  • [12] Song Z-Q, Wang S-B, Yang W, Li M, Wang H, Yan H. Synthesis of manganese titanate MnTiO3 powders by a sol–gel–hydrothermal method. Mater Sci Eng: B. 2004;113:121–4.
  • [13] Li J, Ng DHL, Kwong FL, Chiu KL. Hierarchically porous TiO2-MnTiO3/hollow activated carbon fibers heterojunction photocatalysts with synergistic adsorption-photocatalytic performance under visible light. J Porous Mater. 2017;24:1047–59.
  • [14] Li X, Zhang H, Luo J, Feng Z, Huang J. Hydrothermal synthesized novel nanoporous g-C3N4/MnTiO3 hetero-junction with direct Z-scheme mechanism. Electrochim Acta. 2017;258:998–1007.
  • [15] He H, Dong W, Zhang G. Photodegradation of aqueous methyl orange on MnTiO3 powder at different initial pH. Res Chem Intermed. 2010;36:995–1001.
  • [16] Alkaykh S, Mbarek A, Ali-Shattle EE. Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon. 2020;6:e03663.
  • [17] Bae KN, Noh SI, Ahn H-J, Seong T-Y. Effect of MnTiO3 surface treatment on the performance of dye-sensitized solar cells. Mater Lett. 2013;96:67–70.
  • [18] Yousef A, Brooks RM, Abutaleb A, El-Newehy MH, Al-Deyab SS, Kim HY. One-step synthesis of Co-TiC-carbon composite nanofibers at low temperature. Ceram Int. 2017;43:5828–31.
  • [19] Yousef A, Brooks RM, El-Halwany M, Abutaleb A, El-Newehy MH, Al-Deyab SS, et al. Electrospun CoCr7C3-supported C nanofibers: effective, durable, and chemically stable catalyst for H2 gas generation from ammonia borane. Molecular Catalysis. 2017;434:32–8.
  • [20] Moradi M, Vasseghian Y, Khataee A, Harati M, Arfaeinia H. Ultrasound-assisted synthesis of FeTiO3/GO nanocomposite for photocatalytic degradation of phenol under visible light irradiation. Sep Purif Technol. 2020;261:118274.
  • [21] Unalan HE, Wei D, Suzuki K, Dalal S, Hiralal P, Matsumoto H, et al. Photoelectrochemical cell using dye sensitized zinc oxide nanowires grown on carbon fibers. Appl Phys Lett. 2008;93:133116.
  • [22] Liu J, Li J, Sedhain A, Lin J, Jiang H. Structure and photoluminescence study of TiO2 nanoneedle texture along vertically aligned carbon nanofiber arrays. J Phys Chem C. 2008;112:17127–32.
  • [23] Yousef A, Barakat NAM, Kim HY. Electrospun Cu-doped titania nanofibers for photocatalytic hydrolysis of ammonia borane. Appl Catal A: Gen. 2013;467:98–106.
  • [24] Yousef A, Brooks RM, El-Halwany MM, El-Newehy MH, Al-Deyab SS, Barakat NAM. Cu0/S-doped TiO2 nanoparticles-decorated carbon nanofibers as novel and efficient photocatalyst for hydrogen generation from ammonia borane. Ceram Int. 2016;42:1507–12.
  • [25] Panthi G, Barakat NA, Khalil KA, Yousef A, Jeon KS, Kim HY. Encapsulation of CoS nanoparticles in PAN electrospun nanofibers: effective and reusable catalyst for ammonia borane hydrolysis and dyes photodegradation. Ceram Int. 2013;39:1469–76.
  • [26] Yousef A, Barakat NA, Amna T, Al-Deyab SS, Hassan MS, Abdel-Hay A, et al. Inactivation of pathogenic Klebsiella pneumoniae by CuO/TiO2 nanofibers: a multifunctional nanomaterial via one-step electrospinning. Ceram Int. 2012;38:4525–32.
  • [27] Yousef A, Barakat NA, Kim HY. Electrospun Cu-doped titania nanofibers for photocatalytic hydrolysis of ammonia borane. Appl Catal A: Gen. 2013;467:98–106.
  • [28] Yousef A, Brooks RM, El-Halwany M, EL-Newehy MH, Al-Deyab SS, Barakat NA. Cu0/S-doped TiO2 nanoparticles-decorated carbon nanofibers as novel and efficient photocatalyst for hydrogen generation from ammonia borane. Ceram Int. 2016;42:1507–12.
  • [29] Yousef A, Brooks RM, El-Halwany MM, Obaid M, El-Newehy MH, Al-Deyab SS, et al. A novel and chemical stable Co–B nanoflakes-like structure supported over titanium dioxide nanofibers used as catalyst for hydrogen generation from ammonia borane complex. Int J Hydrog Energy. 2016;41:285–93.
  • [30] Yousef A, El-Halwany M, Barakat NA, Al-Maghrabi MN, Kim HY. Cu0-doped TiO2 nanofibers as potential photocatalyst and antimicrobial agent. J Ind Eng Chem. 2015;26:251–8.
  • [31] Al-Enizi AM, Brooks RM, Abutaleb A, El-Halwany M, El-Newehy MH, Yousef A. Electrospun carbon nanofibers containing Co-TiC nanoparticles-like superficial protrusions as a catalyst for H2 gas production from ammonia borane complex. Ceram Int. 2017;43:15735–42.
  • [32] Al-Enizi AM, El-Halwany MM, Al-Abdrabalnabi MA, Bakrey M, Ubaidullah M, Yousef A. Novel low temperature route to produce CdS/ZnO composite nanofibers as effective photocatalysts. Catalysts. 2020;10:417.
  • [33] Al-Enizi AM, Nafady A, El-Halwany M, Brooks RM, Abutaleb A, Yousef A. Electrospun carbon nanofiberencapsulated NiS nanoparticles as an efficient catalyst for hydrogen production from hydrolysis of sodium borohydride. Int J Hydrog Energy. 2019;44:21716–25.
  • [34] Yousef A, Brooks RM, El-Newehy MH, Al-Deyab SS, Kim HY. Electrospun Co-TiC nanoparticles embedded on carbon nanofibers: active and chemically stable counter electrode for methanol fuel cells and dye-sensitized solar cells. Int J Hydrog Energy. 2017;42:10407–15.
  • [35] Xue Z, Xiong Q, Zou C, Chi H, Hu X, Ji Z. Growth of carbon nanofibers through chemical vapor deposition for enhanced sodium ion storage. Mater Res Bull. 2021;133:111049.
  • [36] Ning X, Zhong W, Li S, Wang Y, Yang W. High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors. J Mater Chem A. 2014;2:8859–67.
  • [37] Ali I, Park S, Kim J-O. Modeling the photocatalytic reactions of g-C3N4-TiO2 nanocomposites in a recirculating semi-batch reactor. J Alloys Compd. 2020;821:153498.
  • [38] Wang R-C, Yu C-W. Phenol degradation under visible light irradiation in the continuous system of photocatalysis and sonolysis. Ultrason Sonochem. 2013;20:553–64.
  • [39] Moradi M, Vasseghian Y, Khataee A, Harati M, Arfaeinia H. Ultrasound-assisted synthesis of FeTiO3/GO nanocomposite for photocatalytic degradation of phenol under visible light irradiation. Sep Purif Technol. 2021;261:118274.
  • [40] Alkaykh S, Mbarek A, Ali-Shattle EE. Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon. 2020;6:e03663.
  • [41] Mengyue Z, Shifu C, Yaowu T. Photocatalytic degradation of organophosphorus pesticides using thin films of TiO2. J Chem Technol Biotechnol. 1995;64:339–44.
  • [42] Ming L. Treatment of dye aqueous solution by UV/TiO2 process with applying bias potential. Water Sci. 2000;36:189–06.
  • [43] Chen Y-W, Hsu Y-H. Effects of reaction temperature on the photocatalytic activity of TiO2 with Pd and Cu co-catalysts. Catalysts. 2021;11:966.
  • [44] Meng Y, Xia S, Pan G, Xue J, Jiang J, Ni Z. Preparation and photocatalytic activity of composite metal oxides derived from Salen-Cu (II) intercalated layered double hydroxides. Korean J Chem Eng. 2017;34:2331–41.
  • [45] Ojstršek A, Kleinschek KS, Fakin D. Characterization of nano-sized TiO2 suspensions for functional modification of polyester fabric. Surf Coat Technol. 2013;226:68–74.
  • [46] Kumar A, Pandey G. A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater Sci Eng Int J. 2017;1:1–10.
  • [47] Salimi A, Roosta A. Experimental solubility and thermodynamic aspects of methylene blue in different solvents. Thermochim Acta. 2019;675:134–9.
  • [48] Ahmed S, Rasul M, Martens WN, Brown R, Hashib M. Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination. 2010;261:3–18.
  • [49] Li Puma G, Yue PL. Effect of the radiation wavelength on the rate of photocatalytic oxidation of organic pollutants. Ind Eng Chem Res. 2002;41:5594–600.
  • [50] Kaneco S, Rahman MA, Suzuki T, Katsumata H, Ohta K. Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. J Photochem Photobiol A: Chem 2004;163:419–24.
  • [51] Giannakoudakis DA, Farahmand N, Łomot D, Sobczak K, Bandosz TJ, Colmenares JC. Ultrasound-activated TiO2/GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors. Chem Eng J. 2020;395:125099.
  • [52] Fathinia M, Khataee A. Photocatalytic ozonation of phenazopyridine using TiO2 nanoparticles coated on ceramic plates: mechanistic studies, degradation intermediates and ecotoxicological assessments. Appl Catal A: Gen. 2015;491:136–54.
  • [53] Soltani RDC, Rezaee A, Khataee A, Safari M. Photocatalytic process by immobilized carbon black/ZnO nanocomposite for dye removal from aqueous medium: optimization by response surface methodology. J Ind Eng Chem. 2014;20:1861–8.
  • [54] Daneshvar N, Rabbani M, Modirshahla N, Behnajady MA. Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process. J Photochem Photobiol A: Chem. 2004;168:39–45.
  • [55] Marandi R, Olya ME, Vahid B, Khosravi M, Hatami M. Kinetic modeling of photocatalytic degradation of an azo dye using nano-TiO2/polyester. Environ Eng Sci. 2012;29:957–63.
  • [56] Wei L, Yang Y, Yu Y-N, Wang X, Liu H, Lu Y, et al. Visible-light-enhanced catalytic hydrolysis of ammonia borane using RuP2 quantum dots supported by graphitic carbon nitride. Int J Hydrog Energy. 2021;46:3811–20.
  • [57] Wen M, Kuwahara Y, Mori K, Zhang D, Li H, Yamashita H. Synthesis of Ce ions doped metal–organic framework for promoting catalytic H2 production from ammonia borane under visible light irradiation. J Mater Chem A. 2015;3:14134–41.
  • [58] Simagina V, Komova O, Ozerova A, Netskina O, Odegova G, Kayl N, et al. TiO2-based photocatalysts for controllable hydrogen evolution from ammonia borane. Catalysis Today. 2021;379:149–58.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fd008ad4-b637-47b6-aaee-d52630af9ab8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.