Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In reaction to the expanding predominance of diabetes mellitus, curcumin nanoparticles stacked on carboxymethyl cellulose (CMC) composite were effectively synthesized, characterized, and examined utilizing UV/Vis and FTIR spectroscopy combined with transmission electron microscopy (TEM). The bioactivity of curcumin (Cur), carboxymethyl cellulose (CMC), and curcumin nanoparticles stacked with carboxymethyl cellulose (CUR-CMC) was tried through atomic docking approval as an α-amylase and α-glucosidase inhibitor. The conclusion illustrated that the curcumin-supported CMC is more potent than CUR itself self the validation presented is compared with acarbose as a reference molecule and then CUR-CMC can presented as promising in curing hyperglycemia by decreasing the absorption of glucose.
Czasopismo
Rocznik
Tom
Strony
63--69
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wz.
Twórcy
autor
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
autor
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
autor
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
autor
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
autor
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
autor
- School of health and biomedical sciences, RMIT University, Melbourne 3083, Australia
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
autor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki 12622, Cairo, Egypt
autor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki 12622, Cairo, Egypt
Bibliografia
- 1. Sugandh, F., Chandio, M., Raveena, F., Kumar, L., Karishma, F., Khuwaja, S., Memon, U.A., Bai, K., Kashif, M., Varrassi, G., Khatri, M. & Kumar, S. (2023). Advances in the Management of Diabetes Mellitus: A Focus on Personalized Medicine. Cureus 15(8), e43697. DOI: 10.7759/cureus.43697.
- 2. Rosengren, A. & Dikaiou, P. (2023). Cardiovascular outcomes in type 1 and type 2 diabetes. Diabetologia 66, 425–437. DOI: 10.1007/s00125-022-05857-5.
- 3. Joshua, S.R. Shin, S. Lee, J.H. & Kim, S.K. (2023). Health to Eat: A Smart Plate with Food Recognition, Classification, and Weight Measurement for Type-2 Diabetic Mellitus Patients’ Nutrition Control. Sensors 23(3), 1656. DOI: 10.3390/s23031656.
- 4.Padhi, S. Nayak, A.K. & Behera, A. (2020). Type II diabetes mellitus: a review on recent drug based therapeutics. Biomed. Pharmacother. 131, 110708. DOI: 10.1016/j.biopha.2020.110708.
- 5. Kwon, S., Kim, Y.C., Park, J.Y., Lee, J., An, J.N., Kim, C.T., Oh, S., Park, S., Kim, D.K., Oh, Y.K. & Kim, Y.S. (2020). The long-term effects of metformin on patients with type 2 diabetic kidney disease. Diabetes Care 43(5), 948–955. DOI: 10.2337/dc19-0936.
- 6. Zahra, S., Zaib, S. & Khan, I. (2024). Identification of isobenzofuranone derivatives as promising antidiabetic agents: Synthesis, in vitro and in vivo inhibition of α-glucosidase and α-amylase, computational docking analysis and molecular dynamics simulations. Int. J. Biol. Macromol. 259(part 2), 129241. DOI: 10.1016/j.ijbiomac.2024.129241.
- 7. Lam, T.P., Tran, N.V.N., Pham, L.H.D., Lai, N.V.T., Dang, B.T.N., Truong, N.L.N., Nguyen-Vo, S.K., Hoang, T.L., Mai, T.T. & Tran, T.D. (2024). Flavonoids as dual-target inhibitors against α-glucosidase and α-amylase: a systematic review of in vitro studies. Nat. Prod. Bioprospect. 14, 4. DOI: 10.1007/s13659-023-00424-w.
- 8. Bhawana, Basniwal, R.K., Buttar, H.S., Jain, V.K. & Jain, N. (2011). Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J. Agric. Food Chem. 59(5), 2056–2061. DOI: 10.1021/jf104402t.
- 9. Slika, L. & Patra, D. (2020). A short review on chemical properties, stability and nano-technological advances for curcumin delivery. Expert Opin. Drug Deliv. 17(1), 61–75. DOI: 10.1080/17425247.2020.1702644.
- 10. Ataei, M., Garekani, H.A., Sani, M.A., McClements, D.J. & Sadeghi, F. (2024). Evaluation of polyvinyl pyrrolidone nanofibers for encapsulation, protection, and release of curcumin: Impact on in vitro bioavailability. J. Mol. Liq. 397, 124115. DOI: 10.1016/j.molliq.2024.124115.
- 11. Islam, M.R., Rauf, A., Akash, S., Trisha, S.I., Nasim, A.H., Akter, M., Dhar, P.S., Ogaly, H.A., Hemeg, H.A., Wilairatana, P. & Thiruvengadam, M. (2024). Targeted therapies of curcumin focus on its therapeutic benefits in cancers and human health: Molecular signaling pathway-based approaches and future perspectives. Biomed. Pharmacother. 170, 116034. DOI: 10.1016/j.biopha.2023.116034.
- 12. Varshney, H. & Siddique, Y.H. (2024). Effect of Natural Plant Products on Alzheimer’s Disease. CNS Neurol. Disord. Drug Targets 23(2), 246–261. DOI: 10.2174/187152732266623 0228102223.
- 13. Rahman, M.S., Hasan, M.S., Nitai, A.S., Nam, S., Karmakar, A.K., Ahsan, M.S., Shiddiky, M.J.A. & Ahmed, M.B. (2021). Recent Developments of Carboxymethyl Cellulose. Polymers 13(8), 1345. DOI: 10.3390/polym13081345.
- 14. Zennifer, A., Senthilvelan, P., Sethuraman, S. & Sundaramurthi, D. (2021). Key advances of carboxymethyl cellulose in tissue engineering & 3D bioprinting applications. Carbohydr. Polym. 256, 117561. DOI: 10.1016/j.carbpol.2020.117561.
- 15. Yaradoddi, J.S., Banapurmath, N.R., Ganachari, S.V., Soudagar, M.E.M., Mubarak, N.M., Hallad, S., Hugar, S. & Fayaz, H. (2020). Biodegradable carboxymethyl cellulose based material for sustainable packaging application. Sci. Rep. 10, 21960. DOI: 10.1038/s41598-020-78912-z.
- 16. Zhang, W., Liu, Y., Xuan, Y. & Zhang, S. (2020). Synthesis and Applications of Carboxymethyl Cellulose Hydrogels. Gels 8(9), 529. DOI: 10.3390/gels8090529.
- 17. Muhammed, M.T. & Aki-Yalcin, E. (2024). Molecular docking: principles, advances, and its applications in drug discovery. Lett. Drug Des. Discov. 21(3), 480–495. DOI: 10.21 74/1570180819666220922103109.
- 18. Kolybalov, D.S., Kadtsyn, E.D. & Arkhipov, S.G. (2024). Computer Aided Structure-Based Drug Design of Novel SARS-CoV-2 Main Protease Inhibitors: Molecular Docking and Molecular Dynamics Study. Computation 12(1), 18. DOI: 10.3390/computation12010018.
- 19. Zerroug, E., Belaidi, S., Chtita, S., Tuffaha, G., AbulQais, F., Kciuk, M., Dubey, A. & Taha, M.O. (2024). Structure-Based Approaches for the Prediction of Alzheimer’s Disease Inhibitors: Comparative Interactions Analysis, Pharmacophore Modeling and Molecular Dynamics Simulations. Chem. Select 9(6), e202303307. DOI: 10.1002/slct.202303307.
- 20. Hassan, A.S., Osman, S.A. & Hafez, T.S. (2015). 5-Phenyl-2-furaldehyde: Synthesis, reactions and biological activities. Egypt. J. Chem. 58(2), 113–139. DOI: 10.21608/ejchem.2015.978.
- 21. Morsy, N.M., Hassan, A.S., Hafez, T.S., Mahran, M.R.H., Sadawe, I.A. & Gbaj, A.M. (2021). Synthesis, antitumor activity, enzyme assay, DNA binding and molecular docking of Bis-Schiff bases of pyrazoles. J. Iran. Chem. Soc. 18(1), 47–59. DOI: 10.1007/s13738-020-02004-y.
- 22. Alkahtani, H.M., Almehizia, A.A., Al-Omar, M.A., Obaidullah, A.J., Zen, A.A., Hassan, A.S., & Aboulthana, W.M. (2023). In vitro evaluation and bioinformatics analysis of Schiff bases bearing pyrazole scaffold as bioactive agents: antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic. Molecules 28(20), 7125. DOI: 10.3390/molecules28207125.
- 23. Hassan, A.S., Morsy, N.M., Aboulthana, W.M. & Ragab, A., 2023. In vitro enzymatic evaluation of some pyrazolo-[1,5-a]pyrimidine derivatives: Design, synthesis, antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic activities with molecular modeling simulation. Drug Dev. Res. 84(1), 3–24. DOI: 10.1002/ddr.22008.
- 24. Naglah, A.M., Askar, A.A., Hassan, A.S., Khatab, T.K., Al-Omar, M.A., & Bhat, M.A. (2020). Biological Evaluation and Molecular Docking with In Silico Physicochemical, Pharmacokinetic and Toxicity Prediction of Pyrazolo[1,5-a]pyrimidines. Molecules 25(6), 1431. DOI: 10.3390/molecules25061431.
- 25. Khatab, T.K., Mubarak, A.Y., & Soliman, H.A. (2017). Design and synthesis pairing between xanthene and tetrazole in pentacyclic system using tetrachlorosilane with aurora kinase inhibitor validation. J. Heterocycl. Chem. 54(4), 2463–2470. DOI: 10.1002/jhet.2846.
- 26. Khatab, T.K., Hassan, A.S. & Hafez, T.S. (2019). V2O5/SiO2 as an efficient catalyst in the synthesis of 5-amino-pyrazole derivatives under solvent free condition. Bull. Chem. Soc. Ethiop. 33(1), 135–142. DOI: 10.4314/bcse.v33i1.13.
- 27. Shin, Y., Blackwood, J.M., Bae, I.T., Arey, B.W. & Exarhos, G.J. (2007). Synthesis and stabilization of selenium nanoparticles on cellulose nanocrystal. Mater. Lett. 61(21), 4297–4300. DOI: 10.1016/j.matlet.2007.01.091.
- 28. Shaker, N., Kandil, E.M., Osama, Y., & Khatab, T.K. (2021). ZnCl2/SiO2 as a New Catalyst for the Eco-Friendly Synthesis of N-Thiocarbamoyl Pyrazoles and Thiosemicarba-zones with Antioxidant and Molecular Docking Evaluation as (Upps) Inhibitor. Curr. Org. Chem. 25(17), 2037–2044. DOI: 10.2174/1385272825666210809142341.
- 29. Hassan, A.S., Morsy, N.M., Aboulthana, W.M. & Ragab, A. (2023). Exploring novel derivatives of isatin-based Schiff bases as multi-target agents: design, synthesis, in vitro biological evaluation, and in silico ADMET analysis with molecular modeling simulations. RSC Adv. 13(14), 9281–9303. DOI: 10.1039/D3RA00297G.
- 30. Khatab, T.K., Kandil, E.M., Elsefy, D.E. & El-Mekabaty, A. (2021). A one-pot multicomponent catalytic synthesis of new 1H-Pyrazole-1-Carbothioamide derivatives with molecular docking studies as COX-2 inhibitors. Biointerface Res. Appl. Chem. 11(6), 13779–13789. DOI: 10.33263/BRIAC116.1377913789.
- 31. Klages, C.P., Hinze, A. & Khosravi, Z. (2013). Nitrogen plasma modification and chemical derivatization of polyethylene surfaces-an in situ study using FTIR-ATR spectroscopy. Plasma Process. Polym. 10(11), 948–958. DOI: 10.1002/ppap.201300033.
- 32. Hidayat, S., Ardiaksa, P., Riveli, N. & Rahayu, I. (2016). Synthesis and characterization of carboxymethyl cellulose (CMC) from salak-fruit seeds as anode binder for lithium-ion battery. J. Phys.: Conf. Ser. 1080, 012–017. DOI: 10.1088/1742-6596/1080/1/012017.
- 33. Fujimoto, Z., Takase, K., Doui, N., Momma M., Matsumoto, T. & Mizuno, H. (1998). Crystal structure of a catalytic-site mutant alpha-amylase from Bacillus subtilis complexed with maltopentaose. J. Mol. Biol. 277(2), 393–407. DOI: 10.1006/jmbi.1997.1599.
- 34. Konishi, Y., Okamoto, A., Takahashi, J., Aitani, M. & Nakatani, N. (1994). Effect of Bay m 1099, an α-glucosidase inhibitor, on starch metabolism in germinating wheat seeds. Biosci. Biotechnol. Biochem. 58(1), 135–139. DOI: 10.1271/bbb.58.135.
- 35. Kimura, A. (2000). Molecular anatomy of α-glucosidase. Trends Glycosci. Glycotechnol. 12, 373–380. DOI: 10.4052/tigg.12.373.
- 36. Okuyama, M., Saburi, W., Mori, H. & Kimura, A. (2016). α-Glucosidases and α-1, 4-glucan lyases: structures, functions, and physiological actions. Cell. Mol. Life Sci. 73, 2727–2751. DOI: 10.1007/s00018-016-2247-5.
- 37. Yamamoto, T., Unno, T., Sugawara, M. & Goda, T. (1999). Properties of a nigerose and nigerosylmaltooligosaccharides-supplemented syrup. J. Appl. Glycosci. 46(4), 475–482. DOI: 10.5458/jag.46.475.
- 38. Ojima, T., Aizawa, K., Saburi, W. & Yamamoto, T. (2012). α-Glucosylated 6-gingerol: chemoenzymatic synthesis using α-glucosidase from Halomonas sp. H11, and its physical properties. Carbohydr. Res. 354, 59–64. DOI: 10.1016/j. carres.2012.03.012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fcfc6fbd-b916-4a58-a478-0084cd0574cc