
INFORMATION
SYSTEMS IN

MANAGEMENT Information Systems in Management (2016) Vol. 5 (1) 88−98

MODELS OF IT PROJECT MANAGEMENT IMPLEMENTATION
AND MAINTENANCE

ANNA PLICHTA
 a), SZYMON SZOMIŃSKI

 b)
a) Cracow University of Technology, Department of Computer Science

b) AGH University of Science and Technology

The process of software development has become so dynamic that it nowadays
requires more and more supporting tools. An organization which intends to have
such tools implemented must take into account its possible future needs. Complex
solutions usually offer greater variety of available options and functionalities but are
costly to implement. This paper presents some models o IT project management to-
gether with the supporting software. Owing to applying the resource management
policy at the stage of production and implementation one may assess the risk and
identify potential threats. The discussed issues may shed some light on potential dif-
ficulties occurring at the particular stages of software production management
whereas the conclusions may help people in charge choose the best model, including
its implementation strategy. The first model are dedicated tools created from scratch
and often preceded by the analysis of the existing solutions and the needs of the
company and the customers. The second is to seek from the very beginning multi-
function and complex tools for the big or well-developed IT systems providers. This
article is to present the models regarding the IT project management (together with
the related supporting tools) which are applied in the IT companies involved in
providing the foreign customers with the bases of knowledge. On the basis of the
experience gained while designing and developing dedicated software (by means of
the above-mentioned tools) and its implementation one drew some conclusions con-
cerning e.g., risk assessment; potential threats at every stage of the project lifecycle;
improvement of the quality and production time of the software; reduction of the
number of errors; improvement of the internal communication within the project
team (it is the first step in the development of the design patterns). The patterns
should help the managers choose the proper management model and related tools for
the implementation and particular project tasks.

Keywords: project management, risk assessment, software life cycle, software im-
plementation

89

1. Introduction

Many IT tools supporting the project management is currently available on
the market. Some of the are one-task applications (e.g., dedicated to generating
project timetables or reporting), some are complex, multi-function ones for project
portfolio management in the entire institution.

Growing demand for the creation of new and more complex software is no
longer unusual. Everyone who took part in its manufacture is aware of the com-
plexity of its production .These are: the specification of the functional and system
requirements that meet real needs and expectations of the customer; designing and
implementation of the system in accordance with the specification (including the
tests proving that such an accordance was met); the ability to be updated and modi-
fied. Hence, the proper organization of the work, especially good design patterns
and project management tools are very important to effectively produce the soft-
ware. The application of the verified methods and good practices may solve many
typical IT issues and lead to the creation of high-quality, scalable and flexible code.

Until recently, one person could deal with the process of gathering require-
ments, analysis, design, programming, testing and implementation of the created
solutions. Exploratory programming is not a good practice for complex software
production on a massive scale. The complexity of the currently created systems is
simply too big for a single person to maintain throughout the whole life cycle.

The difficulty resulting from the size of the system makes it necessary to
standardize software development process. Over the years there have been several
models of action and states in which an IT product currently is. A set of models of
software life cycle is vast. We can highlight some key models, while the rest of
them are mostly a combination of two or more of related methods.

Define

requirements
Develop system Test system

Test system

Test system

Yes

No

Figure 1. Exploratory programming

90

The software life cycle model consists of a series of interdependent phases.
In one of the first steps one defines the needs for the construction of an information
system by means of clarifying the idea of its construction, operation, parameteriza-
tion resulting from the nature of its activities, and ending with the cessation of its
operation. In this paper we will present those parts of the software life cycle that
are directly related to the implementation management process and IT project and
its successive maintenance.

The most common models used during software development are the cascade
model and iterative model. In each of these models we can distinguish some phases
describing a set of actions whose aim is to create a working system that meets the
client's expectations.

2. Life cycle models system

The cascade model also known as cascading waterfall model is the oldest and
most famous model of the IT product life cycle management. This model is com-
monly used because it seems to be the most natural one. Here, the problem is di-
vided into several consecutive steps. Anyone who applies the waterfall model to
build an IT system should go step by step through all its stages in a strict order. The
phases that can be distinguished in the cascade model are among others: the gather-
ing of requirements, analysis, design, implementation, testing, implementation of
the entire system.

Figure 2. Cascade model

In this model, the output of one stage is a point of no return: one cannot make

any step backwards. Thus, the sequence of stages is rigid. After creating a model of
the problem domain an analyst designer passes the solution to a designer who in
turn accedes to create a software project. Then, the programmer is responsible for

91

the implementation. The next step is a verification of the implementation intended
to eliminate the mistakes so that one can deliver the product to the customer.

• The order of transfer of results in cascade model is very important. Indeed,
sometimes a return to the already completed phases of the model is neces-
sary, but such situations should be avoided. The verification at each stage
is therefore inevitable, especially when the team encounters errors at the
stage of implementation. The waterfall model has the following features:

• Obtaining a product meeting customer expectations is very strongly de-
pendent on the stability of requirements which are, in fact, very difficult to
clarify at the beginning of designing.

The phase of verification of the product compliance with the requirements is car-
ried out only in the final stages.

• If one tries to personalize the product in response to the change of require-
ments, the cost of the system creation must inevitably rise.

• The order of execution of the work must be strictly followed, but it is not
necessarily a disadvantage.

• The high cost of mistakes made in the initial stages is very characteristic
feature of the cascade model. The error at the stage of collection or analy-
sis of requirements can be detected only at the stage of acceptance tests or,
which is even worse, during the operation. The costs of their removal may
significantly exceed the costs of mistakes made at the implementation
stage.

The waterfall model, despite its peculiar features, in a slightly modified form has
become a standard recommended in the development of software for military use.
According that modification, after each stage of development a series of documents
is created and only their approval is sufficient to move to the next stage of the
software development.

The Iterative model organizes the requirements and divides them into smaller
subsets. Each distinct subset contains a set of defined functionalities. They must be
first executed, which enables for the transition to the next set. Completed iteration
provides a partial functionality that has passed through all the stages of software
development.

This approach allows you to divide the project into smaller parts and to exe-
cute them according to the established priorities thereby eliminating the risk of the
failure of the whole solution. Iterative model enables for the very fast verifications
of the feasibility of the developed system and for gathering the feedback from the
customer. In order to obtain an overall picture of the scope of the functionality of
the designed system one conducts a process called requirements reconnaissance.
The result of this process is the assignment of the specific tasks to the particular
iterations and making a schedule of their implementation. These pre-defined

92

actions rely mostly on developing an overall architecture of the system, and some-
times even its prototype.

Figure 3. Iterative model

One variant of the iterative model allows for the implementation if a part of

the system has been tested and is compatible with the requirements of the custom-
er. This implementation brings both financial benefits associated with the partial
implementation of the system, and allows for getting fully objective opinions about
its performance in the real-world conditions. The implementation of the system
takes place in several steps where each step contains a certain subset of completed
iterations.

Figure 4. V model

The development of the cascade model is the model V. It gained popularity

thanks to the extensive testing phase of the produced system. Tests at every stage
of the software life cycle are for the sake of verification and to validate the correct-

93

ness of operations included in it. Each step has been provided with the testing
stage so one gets a product that meets customer requirements.

An attempt to formalize the iterative approach to software development is a
spiral model. This approach analyzes the risks that occur in each iteration. Contin-
uous monitoring and measuring changes which are subjected to critical evaluation
by users allows one to conduct the risk analysis. One of the first steps within the
spiral model is the analysis of the prerequisites. If the requirements seem to be
achievable within the prescribed time, budget and the available resources (i.e. the
principle of the triangle) one can start the project planning and the first iteration.

Each iteration takes the form of small waterfalls followed by a review of the
system. If the project requires further work then one needs to plan the next iteration
and perform risk analysis. Spiral model is a variant version of the waterfall model
based on the current risk analysis.
In the spiral model, we can distinguish four basic steps included in the system:

• Planning - based on the requirements and objectives set by the customer, it
shall be made to identify the alternatives and limitations and for planning
iterations each time one starts the next spiral cycle

• Risk analysis - is simply the assessment of alternatives, and attempts to
identify and analyze the risks associated with each possible alternative
construction of a new solution.

• construction - is in the form of a small waterfall, and its aim is to produce
the next version of the system.

• evaluation by the customer - verification of the created solution and its as-
sessment with the possibility of modifications to the requirements on the
system (potential modifications to the requirements should be avoided).

The benefits of the spiral model include the mitigation of the risk of failure of the
project and product verification by the user at each stage in order to make a product
fully satisfying the customer. An attempt to deal with the lack of identification and
lack of requirement stability was included in the model of prototyping.

In this model a system is created by building up successive approximations so
that each of the subsequent prototypes could reflect the requirements as close as
possible. Evaluation of the prototype and subsequent versions of these prototypes
in a very natural way leads to the identification of requirements. Prototyping very
often coincides with the requirements analysis phase and hence often depicted
model is referred to as prototyping requirements. A characteristic feature of rapid
prototyping is brisk pace of its creation putting its emphasis on its quality and ad-
aptation to the target environment. A broader view of prototyping in order to con-
tain the design phase in order to verify the effectiveness of the solutions adopted is
also possible.

94

Requirements analysis

Basic requirements

Basic analize

Basic project

Prototype

Evaluation of the

prototype

Modification

requirements

The prototype

meets the

requirements

Requirements

Designing

Implementation

Tests

Installation

Yes

No

Figure 5. Prototype model

The specific features of the models influence the maintaining and manage-

ment of the entire IT project. The one who chooses between the particular policies
towards the project management should take account of many correlated factors.
The cascade model is less risky and more advisable in the case of small projects,
because the iterative model is time consuming as it may require the IT specialist to
verify the assumptions (regarding the bases of knowledge) many times. On the
other hand, the iterative model facilitates implementing all changes, because the
client is more involved in it in the process of software production. That model al-
lows for the introduction of new technologies to raise the qualifications of the team
members and thus the software quality. The V model and the spiral model, in turn,
are based on the standardization of the methods of introduction of the new technol-
ogies and related risk in order to make the company more competitive. Each of the
discussed models has its pros and cons, so one should choose the most suitable for
the particular project. The correct decision may reduce the costs and time of the
production. Otherwise, the customer may resign.

95

3. Tools Supporting Software Development Process

In the process of gathering requirements tools such as Computer Aided Soft-
ware Engineering (CASE) are helpful. Enterprises Architect is one of them.

Enterprise Architect is one of the most popular tools to support IT projects in
the following areas: systems in UML modeling, requirements management, change
management and IT project management support. User-friendly interface allows
one to quickly start working with the tool, but novice users of the tool may require
a lot of time to use its full capabilities

Possibilities of the tools are tailored to different levels of sophistication of us-
ers and to the needs and expectations of the client. Among them we can distinguish
the following elements:

• developing the project by means of the creation of UML models; creation
of all types of diagrams with full specifications including custom diagrams

• creating project templates and models
• configuration of the system to teamwork - a version control system
• creating professional documentation - document management and creating

virtual documents
• management model - different types of repositories according to specified

criteria of selection (including the configuration procedures and the opera-
tions on repositories)

• advanced modeling - the use of patterns and creating one’s own design pat-
terns, the use of profiles and creation of their own profiles, using MDA
transformations to create specific models

• Project management - change management, testing and effort estimation
based on use cases.

Enterprise Architect Professional Edition is a tool for developing complex IT sys-
tems. It has been provided with the ability to define a shared database repository
for projects as well as to plug project to the selected tool enabling for the version
control. Professional version has built-in option of developing code and database
and technology support MDG (Model Driven Generation) and the debugging pro-
cess. It also has full functionality to generate documentation in HTML and RTF.
This edition of the tool supports the process of project management and manage-
ment (tracking) design requirements.

An important issue in the life cycle of the software is the control regarding its
version, and the identification of the reasons for the emergence of errors at each
stage. Version Control System or Visual Studio Team Foundation Server is a pow-
erful software serving as a groupware server for teams of programmers and for
project managers.

TFS server stores the application source code and other project files, offering
sophisticated version control, automatic compilation, reporting and project man-

96

agement. The software integrates multiple server technologies from the Microsoft
and configure them so that they are useful in the software development process.
The teams may use, for example, SharePoint and some functionalities of the Pro-
ject software. The biggest advantage of TFS is full and built-in integration with the
Visual Studio 2013. Hence, the cooperation between the two programs is running
smoothly.

Figure 6. Team Foundation Server workflow

TFS allows you to manage your repositories, compilation processes, testing

infrastructure and implementation. It provides you also with the possibility of easy
collaboration and status reporting. Program Team Foundation Server (TFS) 2013,
created to maximize the performance of development teams, is the center of prod-
uct lifecycle management for Visual Studio. It allows all persons participating in
the project to actively participate in the process of creating software using one of
the solutions.
The basic functions of the environment can include, among others:

• Agile planning and cooperation - the use of agile software development at
one’s own pace, using templates for Scrum, Agile and CMMI®. Down-
loading process templates from other companies or creation of the own
ones. Cooperation with all project participants throughout the development
process, using working elements and Kanban boards so that everyone in-
volved in the project could be integrated into the workflow

• Compilation - capturing and analyzing defects and other quality problems
at an early stage of application development. Code verification, testing for
additional control.

• Test cases management - permanent quality assurance - getting test cases
management functions through the web access. Creation and execution of
the test cases remotely, participation of all members of the team in the re-
views of test cases. Profiling the test units to form a better code via com-
prehensive tracing of the flow of the code, including the sole test units.

97

• Reporting - tracking work items, report generation based on the current op-
erating status. Quick access to required information.

Figure 7. Enterprise Architect

4. Summary

In the article we presented the models of IT project management including
the stages of design, testing, implementation and development of good practices
during the projects. The paper is general in its form as it presents not only the de-
sign patterns created by the company but also the practical conclusions regarding
their impact on the quality of the produced software and how easily one can modi-
fy it during the implementation or update. The paper underscores the fact that tests
should be based on knowledge and experience in order to check the functionality as
well as reliability, scalability, and effectiveness of the system for its users, clients,
and administrators.

The development of good design patterns and making them a part of the com-
pany’s policy can allow for the standardization of the structure of the process of
software production (and supporting tools). The standardization allows for the con-
trol over the project and for the timely reaction for the updates (change manage-
ment), as one of its principles is repeatability with respect to the procedures regard-
ing the risk assessment and reduction, information management, tasking, method-
ology of testing, reporting, preparation and circulation of documents.

The tasks and aims in the IT project require proper methods and keys to be
fulfilled. The design patterns regarding the design and implementation facilitate

98

that. But they are also a challenge for the IT specialists who must gather the related
knowledge, experience and good practices and put it within the more systematic
framework.

REFERENCES

[1] Andrew J. K., Abraham R., Beckwith L., Blackwell A., Burnett M., Erwig M., Scaf-
fidi C., Lawrance J., Lieberman H., Myers B., Rosson M. B., Rothermel G., Shaw M.,
Wiedenbeck S. (2011) The state of the art in end-user software engineering

[2] Beck J., Almstrum V. L., Ellis H. J.C., Towhidnejad M. (2009) Best practices in soft-
ware engineering project class management, In Proceedings of the 40th ACM tech-
nical symposium on Computer science education (SIGCSE '09)

[3] Bruegge B. D, Allen H. (2009) Object-Oriented Software Engineering Using UML,
Patterns, and Java, Prentice Hall Press

[4] Fowler M. (2004) UML Distilled: A Brief Guide To The Standard Object Modeling
Language, Pearson Education Inc.

[5] Graham I. (2004) Inżynieria oprogramowania – metody obiektowe w teorii i praktyce,
WNT, Warszawa

[6] Heckman S., King J., Winters M. (2015) Automating Software Engineering Best
Practices Using an Open Source Continuous Integration Framework, In Proceedings
of the 46th ACM Technical Symp. on Computer Science Education (SIGCSE '15)

[7] Hudepohl J., Dubey A., Moisy S, Thompson J., Niederer H. M. (2014) Deploying an
online software engineering education program in a globally distributed organiza-
tion, In Companion Proceedings of the 36th International Conference on Software
Engineering (ICSE Companion 2014)

[8] Larman C., Vodde B (2008) Scaling Lean & Agile Development: Thinking and Or-
ganizational Tools for Large-Scale Scrum (1 ed.), Addison-Wesley Professional

[9] Larman C. (2004) Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development (3rd Edition), Prentice Hall PTR,
Upper Saddle River, NJ, USA

[10] Lennart C.L. K., Vermaas R., Visser E. (2011) Integrated language definition testing:
enabling test-driven language development, In Proceedings of the 2011 ACM interna-
tional conference on Object oriented programming systems languages and applica-
tions (OOPSLA '11)

[11] Rodrigues C., Neto L., Santana de Almeida E. (2012) Five years of lessons learned
from the software engineering course: adapting best practices for distributed soft-
ware development, In Proceedings of the Second International Workshop on Collabo-
rative Teaching of Globally Distributed Software Development (CTGDSD '12)

[12] Szejko S. (2002) Metody wytwarzania oprogramowania, MIKOM, Warszawa

