INFORMATION
SYSTEMS IN

MANAGEMENT Information Systems in Management (2016) Vol.p 88-98

MODELS OF IT PROJECT MANAGEMENT IMPLEMENTATION
AND MAINTENANCE

ANNA PLICHTA ¥, S7YMON SzomiNisk] P

3 Cracow University of Technology, Department of CotapScience
®) AGH University of Science and Technology

The process of software development has becomersandc that it nowadays
requires more and more supporting tools. An orgditm which intends to have
such tools implemented must take into account datssiple future needs. Complex
solutions usually offer greater variety of availabbptions and functionalities but are
costly to implement. This paper presents some faanél project management to-
gether with the supporting software. Owing to apmythe resource management
policy at the stage of production and implementattme may assess the risk and
identify potential threats. The discussed issueg shed some light on potential dif-
ficulties occurring at the particular stages oftwafe production management
whereas the conclusions may help people in chdrgese the best model, including
its implementation strategy. The first model ardidated tools created from scratch
and often preceded by the analysis of the existiigtions and the needs of the
company and the customers. The second is to seektfre very beginning multi-
function and complex tools for the big or well-deped IT systems providers. This
article is to present the models regarding the idjget management (together with
the related supporting tools) which are appliedhia IT companies involved in
providing the foreign customers with the bases mdvidedge. On the basis of the
experience gained while designing and developirticdéed software (by means of
the above-mentioned tools) and its implementatio& drew some conclusions con-
cerning e.g., risk assessment; potential threagsexty stage of the project lifecycle;
improvement of the quality and production time loé tsoftware; reduction of the
number of errors; improvement of the internal comioation within the project
team (it is the first step in the development of thesign patterns). The patterns
should help the managers choose the proper managemeel and related tools for
the implementation and particular project tasks.

Keywords: project management, risk assessmentyatlife cycle, software im-
plementation

1. Introduction

Many IT tools supporting the project managementugently available on
the market. Some of the are one-task applicatierts, (dedicated to generating
project timetables or reporting), some are comphexiti-function ones for project
portfolio management in the entire institution.

Growing demand for the creation of new and more plersoftware is no
longer unusual. Everyone who took part in its mantifre is aware of the com-
plexity of its production .These are: the spectfaa of the functional and system
requirements that meet real needs and expectaifahge customer; designing and
implementation of the system in accordance withgpecification (including the
tests proving that such an accordance was metghitiey to be updated and modi-
fied. Hence, the proper organization of the wosdpezially good design patterns
and project management tools are very importarmffiectively produce the soft-
ware. The application of the verified methods aoddypractices may solve many
typical IT issues and lead to the creation of hggiadity, scalable and flexible code.

Until recently, one person could deal with the psx of gathering require-
ments, analysis, design, programming, testing amaeimentation of the created
solutions. Exploratory programming is not a goodctice for complex software
production on a massive scale. The complexity efdhrrently created systems is
simply too big for a single person to maintairotighout the whole life cycle.

The difficulty resulting from the size of the systanakes it necessary to
standardize software development process. Oveydares there have been several
models of action and states in which an IT proguctently is. A set of models of
software life cycle is vast. We can highlight sok&y models, while the rest of
them are mostly a combination of two or more ohtedl methods.

Deflne » Develop system p Test system
requirements
ﬁNo Test system
I
Yes
Y
Test system

Figure 1. Exploratory programming

89

The software life cycle model consists of a sedkinterdependent phases.
In one of the first steps one defines the needthfrconstruction of an information
system by means of clarifying the idea of its ¢tarion, operation, parameteriza-
tion resulting from the nature of its activitiesidaending with the cessation of its
operation. In this paper we will present those aftthe software life cycle that
are directly related to the implementation managerpeocess and IT project and
its successive maintenance.

The most common models used during software deneapare the cascade
model and iterative model. In each of these modelsan distinguish some phases
describing a set of actions whose aim is to creat®rking system that meets the
client's expectations.

2. Life cycle models system

The cascade model also known as cascading waterdalél is the oldest and
most famous model of the IT product life cycle mgaraent. This model is com-
monly used because it seems to be the most natuealHere, the problem is di-
vided into several consecutive steps. Anyone whaiegp the waterfall model to
build an IT system should go step by step throdgitsastages in a strict order. The
phases that can be distinguished in the cascadel mmamong others: the gather-
ing of requirements, analysis, design, implemeotattesting, implementation of
the entire system.

‘ Define requirements }—*

. L{ Analyze }—v

. 4—{ Designing }—v

J A—{ Implementation }—v

A 4—{ Tests H

. A—{ Installation ‘

Figure 2. Cascade model

In this model, the output of one stage is a pdintcoreturn: one cannot make
any step backwards. Thus, the sequence of staggglisAfter creating a model of
the problem domain an analyst designer passesothttos to a designer who in
turn accedes to create a software project. Thenptbgrammer is responsible for

90

the implementation. The next step is a verificatibthe implementation intended
to eliminate the mistakes so that one can delheptoduct to the customer.

e The order of transfer of results in cascade malekry important. Indeed,
sometimes a return to the already completed ptafse® model is neces-
sary, but such situations should be avoided. Thification at each stage
is therefore inevitable, especially when the tearooanters errors at the
stage of implementation. The waterfall model hasftlowing features:

» Obtaining a product meeting customer expectatigngery strongly de-
pendent on the stability of requirements which ardact, very difficult to
clarify at the beginning of designing.

The phase of verification of the product compliamgth the requirements is car-
ried out only in the final stages.

< If one tries to personalize the product in respdoghe change of require-
ments, the cost of the system creation must indyitése.

* The order of execution of the work must be striétijowed, but it is not
necessarily a disadvantage.

* The high cost of mistakes made in the initial ssaigevery characteristic
feature of the cascade model. The error at thes sithgollection or analy-
sis of requirements can be detected only at thge sthacceptance tests or,
which is even worse, during the operation. Thesco$their removal may
significantly exceed the costs of mistakes madéhat implementation
stage.

The waterfall model, despite its peculiar featuiesa slightly modified form has
become a standard recommended in the developmeiftefare for military use.
According that modification, after each stage ofedlepment a series of documents
is created and only their approval is sufficientntove to the next stage of the
software development.

The Iterative model organizes the requirementsdivides them into smaller
subsets. Each distinct subset contains a set ofediefunctionalities. They must be
first executed, which enables for the transitionth® next set. Completed iteration
provides a partial functionality that has passedugh all the stages of software
development.

This approach allows you to divide the project iatoaller parts and to exe-
cute them according to the established priorifiesdby eliminating the risk of the
failure of the whole solution. Iterative model elesbfor the very fast verifications
of the feasibility of the developed system anddathering the feedback from the
customer. In order to obtain an overall picturahaf scope of the functionality of
the designed system one conducts a process caligtrements reconnaissance.
The result of this process is the assignment ofsgiexific tasks to the particular
iterations and making a schedule of their implemgon. These pre-defined

91

actions rely mostly on developing an overall amsttitre of the system, and some-
times even its prototype.

Analysis of
requirements

Iteration

Subset selection T

Analysis, design,
implementation and testing

Y

New software version

Figure 3. Iterative model

One variant of the iterative model allows for theplementation if a part of
the system has been tested and is compatible kethelquirements of the custom-
er. This implementation brings both financial bétsefssociated with the partial
implementation of the system, and allows for ggtfuly objective opinions about
its performance in the real-world conditions. Thapiementation of the system

takes place in several steps where each step psrgaiertain subset of completed
iterations.

. »| Acceptance
Requirements 1 (tests
t Logical model f Validation tests J
Logic design P |ntegration tests J

v v

t Physical design[— ™| Modules tests J

Ay Ay \

Implementation Installation

Figure 4.V model
The development of the cascade model is the moddi §ained popularity

thanks to the extensive testing phase of the pemtisgstem. Tests at every stage
of the software life cycle are for the sake of fieaition and to validate the correct-

92

ness of operations included in it. Each step han ovided with the testing
stage so one gets a product that meets customeraegnts.

An attempt to formalize the iterative approach eftvgare development is a
spiral model. This approach analyzes the risksdhbatir in each iteration. Contin-
uous monitoring and measuring changes which areatgll to critical evaluation
by users allows one to conduct the risk analysige Gf the first steps within the
spiral model is the analysis of the prerequisiteshe requirements seem to be
achievable within the prescribed time, budget dredavailable resources (i.e. the
principle of the triangle) one can start the proanning and the first iteration.

Each iteration takes the form of small waterfatiloived by a review of the
system. If the project requires further work thee meeds to plan the next iteration
and perform risk analysis. Spiral model is a vériarsion of the waterfall model
based on the current risk analysis.

In the spiral model, we can distinguish four baséps included in the system:

* Planning - based on the requirements and objecseeby the customer, it
shall be made to identify the alternatives andtations and for planning
iterations each time one starts the next spirdecyc

e Risk analysis - is simply the assessment of altewes and attempts to
identify and analyze the risks associated with epabsible alternative
construction of a new solution.

e construction - is in the form of a small waterfalhd its aim is to produce
the next version of the system.

» evaluation by the customer - verification of theated solution and its as-
sessment with the possibility of modifications he trequirements on the
system (potential modifications to the requiremeshiisuld be avoided).

The benefits of the spiral model include the miiiya of the risk of failure of the
project and product verification by the user athestage in order to make a product
fully satisfying the customer. An attempt to dedhwhe lack of identification and
lack of requirement stability was included in thedwal of prototyping.

In this model a system is created by building ugressive approximations so
that each of the subsequent prototypes could ctethe requirements as close as
possible. Evaluation of the prototype and subsequersions of these prototypes
in a very natural way leads to the identificatidrrequirements. Prototyping very
often coincides with the requirements analysis @hasd hence often depicted
model is referred to as prototyping requirementsharacteristic feature of rapid
prototyping is brisk pace of its creation puttiig @mphasis on its quality and ad-
aptation to the target environment. A broader vidwprototyping in order to con-
tain the design phase in order to verify the effectess of the solutions adopted is
also possible.

93

Basic requirements

Basic analize

v Requirements analysis
. . Modification
Basic project .
requirements

fNo
Prototype
The prototype

meets the
Evaluation of the requirements
prototype

Yes
v
d Requirements
! Designing

Figure 5. Prototype model

The specific features of the models influence thenitaining and manage-
ment of the entire IT project. The one who chodsstsveen the particular policies
towards the project management should take acafumhany correlated factors.
The cascade model is less risky and more advigalitee case of small projects,
because the iterative model is time consuming amit require the IT specialist to
verify the assumptions (regarding the bases of kewge) many times. On the
other hand, the iterative model facilitates impleatirey all changes, because the
client is more involved in it in the process oftaadre production. That model al-
lows for the introduction of new technologies tseathe qualifications of the team
members and thus the software quality. The V maddlthe spiral model, in turn,
are based on the standardization of the methotgrotiuction of the new technol-
ogies and related risk in order to make the compaose competitive. Each of the
discussed models has its pros and cons, so on&lstimose the most suitable for
the particular project. The correct decision maguee the costs and time of the
production. Otherwise, the customer may resign.

94

3. Tools Supporting Software Development Process

In the process of gathering requirements tools sssc@omputer Aided Soft-
ware Engineering (CASE) are helpful. Enterpriseshitect is one of them.

Enterprise Architect is one of the most populatddo support IT projects in
the following areas: systems in UML modeling, regments management, change
management and IT project management support. fdeadly interface allows
one to quickly start working with the tool, but nos users of the tool may require
a lot of time to use its full capabilities

Possibilities of the tools are tailored to differévels of sophistication of us-
ers and to the needs and expectations of the ciembng them we can distinguish
the following elements:

* developing the project by means of the creatiobidiL models; creation
of all types of diagrams with full specificatiomgcluding custom diagrams

e creating project templates and models

« configuration of the system to teamwork - a versiontrol system

e creating professional documentation - document gemant and creating
virtual documents

* management model - different types of repositoaiesording to specified
criteria of selection (including the configuratiprocedures and the opera-
tions on repositories)

» advanced modeling - the use of patterns and coeatie’s own design pat-
terns, the use of profiles and creation of theingwofiles, using MDA
transformations to create specific models

* Project management - change management, testingféord estimation
based on use cases.

Enterprise Architect Professional Edition is a tfml developing complex IT sys-
tems. It has been provided with the ability to defa shared database repository
for projects as well as to plug project to the steld tool enabling for the version
control. Professional version has built-in optidndeveloping code and database
and technology support MDG (Model Driven Genergtiand the debugging pro-
cess. It also has full functionality to generatewoentation in HTML and RTF.
This edition of the tool supports the process @fjgot management and manage-
ment (tracking) design requirements.

An important issue in the life cycle of the softeas the control regarding its
version, and the identification of the reasonstf@ emergence of errors at each
stage. Version Control System or Visual Studio Téauandation Server is a pow-
erful software serving as a groupware server famg of programmers and for
project managers.

TFS server stores the application source code #rat project files, offering
sophisticated version control, automatic compilaticeporting and project man-

95

agement. The software integrates multiple serverelogies from the Microsoft

and configure them so that they are useful in tifevsire development process.
The teams may use, for example, SharePoint and &am&onalities of the Pro-

ject software. The biggest advantage of TFS isandl built-in integration with the

Visual Studio 2013. Hence, the cooperation betwbertwo programs is running
smoothly.

Source
Control

{ o)

Work Validate
[tems Layering

\ =

Execute Deploy
Tests o —1 Build

Figure 6. Team Foundation Server workflow

Builds

TES ‘

TFS allows you to manage your repositories, cortipitaprocesses, testing
infrastructure and implementation. It provides ydso with the possibility of easy
collaboration and status reporting. Program TeaomBation Server (TFS) 2013,
created to maximize the performance of developrteams, is the center of prod-
uct lifecycle management for Visual Studio. It al®all persons participating in
the project to actively participate in the proceggreating software using one of
the solutions.

The basic functions of the environment can inclasheong others:

e Agile planning and cooperation - the use of agiltvgare development at
one’s own pace, using templates for Scrum, Agild @MMI®. Down-
loading process templates from other companiesredtion of the own
ones. Cooperation with all project participant®tighout the development
process, using working elements and Kanban boardbat everyone in-
volved in the project could be integrated into werkflow

» Compilation - capturing and analyzing defects atigeioquality problems
at an early stage of application development. Gedication, testing for
additional control.

» Test cases management - permanent quality asswasténg test cases
management functions through the web access. Gneatid execution of
the test cases remotely, participation of all mensiloé the team in the re-
views of test cases. Profiling the test units tonf@ better code via com-
prehensive tracing of the flow of the code, inchgdihe sole test units.

96

* Reporting - tracking work items, report generati@sed on the current op-
erating status. Quick access to required informatio

R Enterprise
Architoctura Architecture
FdarrndticiDuta Appllcation
Architecturn Architicbury

infrasiceciure
\\ Architectits /

Figure 7. Enterprise Architect

4. Summary

In the article we presented the models of IT pojaanagement including
the stages of design, testing, implementation akldpment of good practices
during the projects. The paper is general in itenfas it presents not only the de-
sign patterns created by the company but also fhetipal conclusions regarding
their impact on the quality of the produced sofevand how easily one can modi-
fy it during the implementation or update. The papederscores the fact that tests
should be based on knowledge and experience im twadeck the functionality as
well as reliability, scalability, and effectiveneskthe system for its users, clients,
and administrators.

The development of good design patterns and makiexm a part of the com-
pany’s policy can allow for the standardizationtloé structure of the process of
software production (and supporting tools). Thed#adization allows for the con-
trol over the project and for the timely reactiam the updates (change manage-
ment), as one of its principles is repeatabilityhwiespect to the procedures regard-
ing the risk assessment and reduction, informatiamagement, tasking, method-
ology of testing, reporting, preparation and ciatian of documents.

The tasks and aims in the IT project require prapethods and keys to be
fulfilled. The design patterns regarding the desagrd implementation facilitate

97

that. But they are also a challenge for the IT ghists who must gather the related
knowledge, experience and good practices and pwithin the more systematic
framework.

REFERENCES

[1]

(2]

[3]
[4]
[5]
[6]

[7]

[8]
[9]

[10]

[11]

[12]

Andrew J. K., Abraham R., Beckwith L., Blackwell,Burnett M., Erwig M., Scaf-
fidi C., Lawrance J., Lieberman H., Myers B., Rossé. B., Rothermel G., Shaw M.,
Wiedenbeck S. (201mMhe state of the art in end-user software engimgeri

Beck J., Almstrum V. L., Ellis H. J.C., Towhidnejatl (2009)Best practices in soft-
ware engineering project class managemémtProceedings of the 40th ACM tech-
nical symposium on Computer science education (SIE09)

Bruegge B. D, Allen H. (2009pbject-Oriented Software Engineering Using UML,
Patterns, and JavaRrentice Hall Press

Fowler M. (2004)UML Distilled: A Brief Guide To The Standard Objédbdeling
Language Pearson Education Inc.

Graham I. (2004)nzynieria oprogramowania — metody obiektowe w teigpiiaktyce
WNT, Warszawa

Heckman S., King J., Winters M. (2013utomating Software Engineering Best
Practices Using an Open Source Continuous Integraramework In Proceedings
of the 46th ACM Technical Symp. on Computer ScieBdacation (SIGCSE '15)

Hudepohl J., Dubey A., Moisy S, Thompson J., Niedét. M. (2014)Deploying an

online software engineering education program imglabally distributed organiza-
tion, In Companion Proceedings of the 36th Internati®®anference on Software
Engineering (ICSE Companion 2014)

Larman C., Vodde B (2008caling Lean & Agile Development: Thinking and Or-
ganizational Tools for Large-Scale Scrijined.), Addison-Wesley Professional

Larman C. (2004)Applying UML and Patterns: An Introduction to Oltjé€riented
Analysis and Design and Iterative Development @ddion), Prentice Hall PTR,
Upper Saddle River, NJ, USA

Lennart C.L. K., Vermaas R., Visser E. (201ritegrated language definition testing:

enabling test-driven language developmémtProceedings of the 2011 ACM interna-
tional conference on Object oriented programmingtesys languages and applica-
tions (OOPSLA '11)

Rodrigues C., Neto L., Santana de Almeida E. (2FFi2¢ years of lessons learned
from the software engineering course: adapting hpractices for distributed soft-
ware developmentn Proceedings of the Second International Wargstn Collabo-
rative Teaching of Globally Distributed Softwarevempment (CTGDSD '12)

Szejko S. (2002Metody wytwarzania oprogramowanisllKOM, Warszawa

98

