PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Frequency analysis of the extreme streamflow by the threshold level method in semi-arid region: Case study of Wadi Mekerra catchment in the North-West of Algeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza częstotliwości ekstremalnych przepływów metodą wartości progowych w regionie o półsuchym klimacie: Przypadek zlewni Wadi Mekerra w północnozachodniej Algierii
Języki publikacji
EN
Abstrakty
EN
Extreme streamflow drought is the direct problem of serious on damaging and on social impacts, so the frequency analysis of hydrological drought is an important work can be done to studying the drought phenomenon in catchments. So the hydrometric data for a river conducts to the establishment of the flow duration curve (FDC) as an important index of streamflow drought regime, from this characteristic, a threshold level can be defined for both perennial or intermittent streams. Well, two partial duration series can be derived for each year; the deficit volume and drought duration series. In the catchment of Wadi Mekerra in the North-West of Algeria, the minimum value estimated from the Pareto’s annual maximum instantaneous flood population (0.60 m3∙s–1) is considered as the threshold level index where, the largest deficit volume and the largest drought duration occurring in a given year are taken into consideration. Hence, the frequency analysis of the streamflow drought regime of the catchment is analysed with Weibull distribution for both deficit volume and drought duration combined with the probability of occurrence which is determined under some criterion in order to forecasting the streamflow drought in the catchment.
PL
Skrajnie niski przepływ w rzece wywołuje poważne, szkodliwe dla środowiska i społeczeństwa skutki, dlatego analiza suszy jest ważnym zadaniem w celu poznania zjawiska w skali zlewni. Dane hydrometryczne rzeki prowadzą do ustalenia krzywych natężenia przepływu (FDC) jako ważnego wskaźnika reżimu przepływu w warunkach suszy. Korzystając z tych charakterystyk, można zdefiniować wartość progową, zarówno dla cieków stałych, jak i dla okresowych. Dla każdego roku można wyprowadzić dwie cząstkowe serie trwania przepływu: serię deficytu objętości i serię trwania suszy. W zlewni Wadi Mekerra w północnozachodniej Algierii minimalna wartość oszacowana na podstawie rocznej populacji Pareto maksymalnych chwilowych powodzi jest traktowana jako wskaźnik wartości progowej, w związku z czym bierze się pod uwagę największy deficyt objętości i najdłuższe trwanie powodzi w danym roku. Analizę częstotliwości przepływu w warunkach suszy w zlewni przeprowadza się w celu prognozowania przepływu w warunkach suszy w zlewni. Wykorzystuje się do tego rozkład Weibulla, zarówno w odniesieniu do deficytu objętości, jak i czasu trwania suszy w powiązaniu z prawdopodobieństwem wystąpienia, które oznacza się, przyjmując pewne założenia.
Wydawca
Rocznik
Tom
Strony
139--145
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • University of Bechar, Faculty of Technology, Department of Civil Engineering and Hydraulic, B.P. 417, 08000 Bechar, Algeria
Bibliografia
  • ALDRICH J. 1997. R. A. Fisher and the making of maximum likelihood 1912–1922. Statistical Science. Vol. 12. No. 3 p. 162–176. DOI 10.1214/ss/1030037906.
  • BEYENE B.S., VAN LOON A.F., VAN LANEN H.A.J., TORFS P.J.J.F. 2014. Investigation of variable threshold level approaches for hydrological drought identification. Hydrology and Earth System Sciences Discuss. 11 p. 12765–12797. DOI 10.5194/hessd-11-12765-2014.
  • CARROLL N., FRIJTERS P., SHIELDS M.A. 2009. Quantifying the costs of drought: new evidence from life satisfaction data. Journal of Population Economics. Vol. 22. Iss. 2 p. 445–461. DOI 10.1007/s00148-007-0174-3.
  • CRAMÉR H., LEADBETTER M.R. 1967. Stationary and related stochastic processes. Sample Function Properties and Their Application. New York. John Wiley and Sons pp. 348.
  • DRACUP J.A., LEE K.S., PAULSON E.G. Jr. 1980. On the definition of droughts. Water Resources Research. Vol. 16(2) p. 297–302. DOI 10.1029/WR016i002p00297.
  • ENGELAND K., HISDAL H., FRIGESSI A. 2004. Practical extreme value modelling of hydrological floods and droughts: A case study. Extremes. Vol. 7. Iss. 1 p. 5–30. DOI 10.1007/s10687-004-4727-5.
  • FLEIG A.K., TALLAKSEN L.M., HISDAL H., DEMUTH S. 2006. A global evaluation of streamflow drought characteristics. Hydrology and Earth System Sciences. Vol. 10. Iss. 4 p. 535–552. DOI 10.5194/hess-10-535-2006.
  • GARCIA-HERRARA R., Daz J., TRIGO R.M., LUTERBACHER J., FISHER E.M. 2010. A review of the European summer heat wave of 2003. Critical Reviews in Environmental Science and Technology. Vol. 40. Iss. 4 p. 267–306. DOI 10.1080/10643380802238137.
  • GAUTSCHI W. 1959. Some elementary inequalities relating to the gamma and incomplete gamma function. Journal of Mathematical Physics. No. 38 p. 77–81. DOI 10.1002/sapm195938177.
  • GOLDSTEIN M.L., MORRIS S.A., YEN G.G. 2004. Problems with fitting to the power-law distribution. The European Physical Journal B – Condensed Matter and Complex Systems. Vol. 41. Iss. 2 p. 255–258. DOI 10.1140/epjb/e2004-00316-5.
  • HISDAL H., TALLAKSEN L.M. 2000. Drought event definition. Technical Report. No. 6. Assessment of the Regional Impact of Droughts in Europe. University of Oslo, Department of Geophysics pp. 45.
  • HISDAL H., TALLAKSEN L.M., CLAUSEN B., PETERS E., GUSTARD A. 2004. Hydrological drought characteristics. Hydrological drought-processes and estimation methods for streamflow and groundwater. Developments in Water Sciences 48. Amsterdam. Elsevier Science BV. ISBN 0444516883 pp. 579.
  • HISDAL H., TALLAKSEN L.M., FRIGESSI A. 2002. Handling no extreme events in extreme value modelling of streamflow droughts. In: FRIEND 2002 – Regional Hydrology: Bridging the gap between research and practice. IAHS Publications. No. 274 p. 281–288.
  • HSIANG S.M., BURKE M., MIQUEL E. 2013. Quantifying the influence of climate on human conflict. Science. Vol. 341. Iss. 6151. DOI 10.1126/science.1235367.
  • JOHNSON N.L., KOTZ S., KEMP A.W. 2005. Univariate discrete distributions. 3rd ed. New York, USA. John Wiley & Sons. ISBN 0471272469 pp. 672.
  • LOPEZ C.P. 2014. MATLAB symbolic algebra and calculus tools. New York, USA. Apress Edition, Springer. ISBN 9781484203446 pp. 260.
  • MISHRA A.K., SINGH V.P. 2010. A review of drought concepts. Journal of Hydrology. Vol. 391 p. 202–216. DOI 10.1016/j.jhydrol.2010.07.012.
  • MISHRA A.K., SINGH V.P. 2011. Drought modelling – A review. Journal of Hydrology. Vol. 403 p. 157–175. DOI 10.1016/j.jhydrol.2011.03.049.
  • NERC 1975. Flood studies report. Vol. 1–5. Swindon, UK. National Environment Research Council.
  • NEWMAN M.E.J. 2005. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics. Vol. 46 p. 323–351. DOI 10.1016/j.cities.2012.03.001.
  • RICE S.O. 1945. Mathematical analysis of random noise. Bell System Technical Journal. Vol. 24. Iss. 1 p. 46–156. DOI 10.1002/j.1538-7305.1945.tb00453.x.
  • SHEFFIELD J., WOOD E.F., RODERICK M.L. 2012. Little change in global drought over the past 60 years. Nature. No. 491 p. 435–438. DOI 10.1038/nature11575.
  • SMAKHTIN V.U. 2001. Low flow hydrology: A review. Journal of Hydrology. Vol. 240. Iss. 3–4 p. 147–186. DOI 10.1016/S0022-1694(00)00340-1.
  • STAHL K. 2001. Hydrological drought – A study across Europe. PhD Thesis. Freiburg, Germany. Albert-Ludwigs Universitaet Freiburg. Freiburger Schriften zur Hydrologie. No. 15 pp. 144.
  • TALLAKSEN L.M. 2000 Streamflow drought frequency analysis. In: Drought and drought mitigation in Europe. Eds. J.V. Vogt, F. Somma. Dordrecht, The Netherlands. Kluwer Academic Publishers p. 103–117. DOI 10.1007/978-94-015-9472-1.
  • TALLAKSEN L.M., MADSEN H., ClAUSEN B. 1997. On the definition and modelling of streamflow drought duration and deficit volume. Hydrological Sciences Journal. Vol. 42. Iss. 1 p. 15–33. DOI 10.1080/02626669709492003.
  • TALLAKSEN L.M., VAN LANEN H.A.J. 2004. Hydrological drought. Processes and estimation methods for streamflow and groundwater. Developments in Water Science. Vol. 48. Amsterdam. Elsevier Science B.V. ISBN 0444517677 pp. 579.
  • TODOROVIC P., ZELENHASIC E. 1970. A stochastic model for flood. Water Resources Research. Vol. 6. No. 6 p. 1641–1648. DOI 10.1029/WR014i002p00345.
  • VAN LOON A.F. 2015. Hydrological drought explained. WIREs Water. No. 2 p. 359–392. DOI 10.1002/wat2.1085.
  • VAN LOON A.F., LAAHA G. 2015. Hydrological drought severity explained by climate and catchment characteristics. Journal of Hydrology. Vol. 526. July p. 3–14. DOI 10.1016/j.jhydrol.2014.10.059.
  • VAN LOON A.F., VAN LANEN H.A.J., TALLAKSEN L.M., HANEL M., FENDEKOVÁ M., MACHLICA A., SAPRIZA G., KOUTROULIS A., VAN HUIJGEVOORT M., BERMÚDEZ J.J., HISDAL H., TSANIS I. 2011. Propagation of drought through the hydrological cycle [online]. WATCH Technical Report No. 31. Wageningen University, The Netherlands pp. 99. [Access 15.08.2018]. Available at: http://www.eu-watch.org/publications/technical-reports
  • VAN VLIET M.T.H., YEARSLEY J.R., LUDWIG F., VOGELE S., LETTENMAIER D.P., KABAT, P. 2012. Vulnerability of US and European electricity supply to climate change. Nature Climate Change. Vol. 2. Iss. 9 p. 676–681. DOI 10.1038/nclimate1546.
  • VOGEL R.M. 1986. The probability plot correlation coefficient test for the Normal, Lognormal and Gumbel distributional hypothesis. Water Resources Research. Vol. 22. No. 4 p. 587–590. DOI 10.1029/WR022i004p00587.
  • VOGEL R.M., FENNESSEY N.M. 1994. Flow-duration curves. I: New interpretation and confidence intervals. Journal of Water Resources Planning and Management. Vol. 120. Iss. 4 p. 485–504. DOI 10.1061/(ASCE)0733-9496(1994)120:4 (485).
  • WILHITE D. 2000. Drought: A global assessment. Vol. 1, 2. London. Routeldge Hazards and Disasters Series.
  • YAHIAOUI A. 2012. Inondations torrentielles. Cartographie des zones vulnérables en Algérie du nord [Flash floods. Mapping vulnerable areas in northern of Algeria]. PhD Thesis. Ecole Nationale Polytechnique of Algiers pp. 186.
  • YAHIAOUI A., TOUAIBIA B. 2011. Using decision support system technique for hydrological risk assessment. Case of oued Mekerra in the western of Algeria. [Fourth International Workshop on Hydrological Extremes]. [15–17.09.2011 Cosenza (Italy). University of Calabria].
  • YEVJEVICH V. 1967. An objective approach to definitions and investigations of continental hydrologic droughts. Hydrology Papers. No. 23. Colorado State University, Fort Collins, USA pp. 18.
  • ZELENHASIC E., SALVAI A. 1987. A method of streamflow drought analysis. Water Resources Research. Vol. 23. Iss. 1 p. 156–168. DOI 10.1029/WR023i001p00156.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fcec184a-f994-456a-9553-5acf11af68ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.