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MINIMAL-PHASE REALIZATIONS FOR POSITIVE LINEAR SYSTEMS

Abstract
The problem of minimal-phase realization for continuous-time and discrete-time linear systems is addressed.
Necessary and sufficient conditions for the existence of minimal-phase realizations for the linear systems are
established. A procedure for computation of the realizations is proposed and illustrated by numerical examples.

INTRODUCTION

Determination of the state space equations for given transfer
matrices is a classical problem, called the realization problem, which
has been addressed in many papers and books [1, 2, 9, 10, 11, 29-
31]. An overview of the positive realization problem is given in [1, 2,
12, 29]. The realization problem for positive continuous-time and
discrete-time linear system has been considered in [4-7, 13-16, 20,
21, 23, 27-30] and for linear systems with delays in [4, 8, 14, 18, 27-
29]. The realization problem for fractional linear systems has been
analyzed in [19, 22, 24, 25, 29, 30] and for positive 2D hydrid linear
systems in [17, 18, 26]. A new modified state variable diagram
method for determination of positive realizations with reduced
number of delays for given proper transfer matrices has been
proposed in [3].

In this paper a new approach to the minimal-phase realization
problem for linear systems will be proposed. Necessary and
sufficient conditions for the existence of the solution to the problem
will be established and a procedure for computation of the
realizations will be proposed.

The paper is organized as follows. In section 1 some
preliminaries on continuous-time and discrete-time linear positive
systems and minimal-phase-realizations are given. The necessary
and sufficient conditions for the existence of the minimal-phase
realizations and a procedure for computation of the realizations for
positive continuous-time linear are proposed in section 2 and for
positive discrete-time systems in section 3.

The following notation will be used: R - the set of real

numbers, R™™ - the set of nxm real matrices, K™ - the set
of nxm real matrices with nonnegative entries, SR™" (s) - the set
of nxm rational matrices in s with real coefficients, Z_ - the set of
nonnegative integers, I,-the nxn identity matrix

Tekst zasadniczy wstepu jak tekst gtéwny Tekst zasadniczy
wstepu jak tekst gtowny Tekst zasadniczy wstepu jak tekst gtowny
Tekst zasadniczy wstepu jak tekst gtéwny Tekst zasadniczy wstepu
jak tekst gtéwny

1. PRELIMINARIES
Consider the continuous-time linear system
X=Ax+Bu, (1a)
y=Cx+Du, (1b)
where xeR", ueR™, yeRP are the state, input and output
vectorsand Ae R™", Be R™", CeRP", DeR”™.
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Definition 1. [12] The system (1) is called (internally) positive if
x=xt)eR! and y=yt)eR?, te[0+o] for all
Xo =X(0) e R} and u=u(t) e R, te[0,+x].

Theorem 1. [12] The system (1) is positive if and only if

AeM,, BeRT™, CeRP" DeRrPM, (2)

where M, is the set of nxn Metzler matrices, i.e. the matrices

with nonnegative off-diagonal entries.
The transfer matrix of (1) is given by

T(s):C[Ins—A]’lB+D:weﬂ%pxm(s), 3)
d(s)
where N(s) is the polynomial matrix and d(s) is the polynomial.
For single-input single-output (SISO, m = p =1) linear system the
transfer function can be written in the form

_n(s) bys"+b, 48" +..+bys+by
d(s) s"+a, S"t+..+as+ay

T(s) (4)

Definition 2. The roots s, s, ,..., S, of the equation

d(s)=s"+a, ;8" +..+as+a,
=(s—8)(s—8p)-..6—5,) =0

are called the poles of the linear system.
Definition 3. The roots s, s5 ..., 50 of the equation

n(s)=b,s" +b, ;8" +..+bs+by

=b,(s-5)(s—53)...6—s2) =0

(6)

are called the zeros of the linear system.
The poles s;, S, ,..., S, and the zeros s, sJ ..., s¥ are called
distinct if s;#5s; for i= j and s =s] for i=j, i,j=1..n,
respectively.
Definition 4. The linear system is called minimal-phase if

Res, <0 and Res <0 for k=1,..., (7)

where Re denotes the real part of the complex number.
Definition 5. [12] The positive system (1) is called asymptotically
stable if

limx(t) =0 forall x, e R . (8)
t—o0

Theorem 2. [12] The positive system (1) is asymptotically stable if
and only if



ReA, <0 for k=1,...n, 9)
where 4, is the eigenvalue of the matrix A< M,, and

det[1,4—Al = (A-A)(A-A)-(i=2p) . (10)

Note that the set of poles {s;, S,,..., S,} in general case is the
subset of the set of eigenvalues { 4, 4, ,..., 4,}[10].
Now let us consider the discrete-time linear system

X1 =A% +BuU, x €2, ={01..}
yi = 6Xi + BUI y

where x; e R", u; e R™, y; e RP are the state, input and output
vectorsand A e R™", B e R™™, C e RP", D e RP™.
Definition 6. [12] The system (11) is called (internally) positive if
X, e R} and y; eRP, iez, forall x,eR] and u; eRT,
ieZ, .
Theorem 3. [12] The system (11) is positive if and only if
AecR”™ BeRP™ CeRP" DeRP™. (12

The transfer matrix of (11) is given by

T(z)=C[l,z-AI'B+D :% eR”M@2), (13)

z

where N(z) is the polynomial matrix and d(z) is the polynomial.
For single-input single-output (SISO, m = p =1) linear system the
transfer function can be written in the form

_n(2)  byz"+b, 2"+ bz Dy
d(z) z2"+a, 2"+ +az+3,

T(2) (14)

Definition 7. The roots z,, z,,..., z, of the equation

d(z)=z"+a, ;2" ' +..+32z+7,
=(2-2)(2-12y)...2-2,) =0

are called the poles of the linear system.
Definition 8. The roots z”, z3 ..., z0 of the equation

n(z) =b,z" +b, ;2" +...+ bz +D,

- (16)
=Bz~ Z)2-23)...c~20) =0

are called the zeros of the linear system.
0

The poles z;, z,,..., z, and the zeros 2, 27 ..., z0 are called

distinct if z; = z; for i j and z =2z for i=j, i,j=1..n,
respectively.
Definition 9. The linear system (11) is called minimal-phase if

|z| <1 and ‘z,?‘<1for k=1..n, (17)

where | | denotes the module of the complex number.
Definition 10. [12] The positive system (11) is called asymptotically
stable if

limx; =0 forall x, e R . (18)

i—o0

Theorem 4. [12] The positive system (11) is asymptotically stable if
and only if

|Zk|<1for k=1..n, (19)

where 4, is the eigenvalue of the matrix A € R"" and
det[1, 1 —Al=(A - (A ~4)- G -4). (20

Definition 11. The matrices A, B, C, D satisfying (2) (A, B, C ,

D satisfying (12)) are called a positive realization of a given
transfer matrix T (s) (T (z) ) if they fulfill the equality (3) ((13)).

2. POSITIVE MINIMAL-PHASE REALIZATIONS OF
CONTINUOUS-TIME LINEAR SYSTEMS

First let us consider the SISO continuous-time linear system
with the transfer function (4). From (4) we have

D= limT(s) =b, 21)

§—

and the strictly proper transfer function has the form

Tsp(s) =T(s)-D =C[|nS—A]_lB

T X S OX (222)
s"+a, 8"+ ras+a, d(S)
where
b, =b —b,a,, k=01..n—-1, (22b)
A(s) =B, 45" +...+bs+by. (22c)

It is assumed that the poles s;, s, ..., s, and the zeros s;,

so ..., s0, of (22) are real, negative, distinct and satisfy the

conditions
S, <sp <S4 for k=1,..n-1. (23)

It is well-known [29] that the strictly proper transfer function (22) can
be written in the form

Tsp(s)zz T )

(24a)
k=15~ Sk
where
T, = 1im (5 5)Tep(8) = — ) (24b)
S8
H (s —sj)
j=1

J=k
Note that T, >0 for k =1,...,n if and only if the poles and zeros

are distinct and satisfy the condition (23). In this case we can
choose ¢, >0, b, >0 so that

and the matrices
by
. b2 nx1
A=diag[s; s, S,leMy, B=| 7 |eRy™,
by
C=le, ¢ - CleR (26)

are a positive realization of the transfer function (22).
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Using (26) it is easy to check that
Tep(s)=C[l,s—A"'B

by
b
=[e, ¢ - Cyldiag[(s—s)" (s-s)" o+ (s-s)] C
bn
=Zn: Cyby =Zn: T
k1S~ Sk 2SS
(27)

By Definition 4 the realization is minimal-phase if the conditions

Res, <0for k=1,...n and Res <0 for k=1,...n—1, (28)

are satisfied. Therefore, the following theorem has been proved.
Theorem 5. There exists minimal-phase realization (26), (21) of the
transfer function (4) if and only if the poles and zeros of (22) are
distinct, real, negative and the conditions (23) are satisfied.
For computation of the minimal-phase realization of the transfer
function (4) we have the following procedure.
Procedure 1.

Step 1. Using (21) and (22) compute D and the strictly proper

transfer function T, (s) .

Step 2. Compute the poles s;, S,,..., s, and the zeros s},
$9 1 Sy Of Tgp(S) .

Step 3. Using (4) and (25) compute T,, k=1,...
b, ¢ fork=1...n

Step 4. Using (26) find the matrices A, B, C.
Example 1. Find a minimal-phase realization of the transfer function

,n and choose

253 +19s? + 525 + 38
T(s) = . 29
) s2 +9s? + 235 +15 )

Using Procedure 1 and (29) we obtain the following:
Step 1. Using (21), (22) and (29) we obtain

253 +19s® + 525 +38

=1limT(s) = lim =2 (30)
$—o0 s> 53495% +235+15
and
2
S°+6s+8
Tp(s)=T(s)-D = : (31)

s®+9s2 + 235 +15
Step 2. The poles and zeros of (31) are

s,=-1,5,=-3,5;=-5and s{ =2, 9 =—4, (32)
since (s+1)(s+3)(s+5) = s +9s5° +235+15 and
(s+2)(s+4) =5>+65+8.

Step 3. Using (24b), (25) and (31) we compute
T=lim(s—s)Tgp(8) =—F——1 —§—cbl
1= DR e (s+3)(s+5)|_, 8
1
T, = lim(s—3,)T,(S) =—F— =—=0Cyb,, (33a
2 sasz( 2) sp( ) (S+1)(S+5) - 4 22 ( )
. 3
Ty=lim(s—55)T,(8) =————F =—=C3b
3 sas3( 3) sp( ) (S+1)(S+3) e 8 3V3
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and we choose

1 1 1 3
=1, bb==,b,==,¢0=—,C,==,C=—. (33b
by 275 bs 1 G g 275875 (33b)
Step 4. Using (26), (32) and (33) we obtain
-1 0 0 1 s 1 3
A=|0 -3 0|,B= % ,C:[g > _} (34)
0 0 -5 %

The desired positive minimal-phase realization is given by (34) and
(30).

Remark 1. For different choice of the entries of matrices B and C
for given T, >0, k=1,...n we obtain different positive minimal-
phase realizations of the transfer function (4).

Now let us consider the m-inputs and p-outputs (MIMO) continuous-
time linear system with the strictly proper transfer matrix

NG) _ gz
S) = s), 35a
Top(s) = as) - (s) (35a)
where
d(s) =(s—s,)(s—5S,)...6—5,) (35b)
(5= 6-54™) -+ (S=Sin) 6=
N(s)= : : (35¢)
0.0y, 0.Npm
(s=50)..6=5,™) + (s—Spm)-- . Spm™)
with distinct real negative poles s;, S,,..., S, and distinct real
negative zeros s{i',..., syt , 0., somP™.
The transfer matrix (35) can be written in the form
LT,
Tp(s) = Z > (36a)
~s—§,
where
T, = lim (s 5 )Tep(8) =) (36b)
H(Sk -sj)
]¢k
and
rank T, =1, <min(m, p) . (37)
Itis easy to check that if the conditions
S <SP < fori=1..,p, j=1..m, k=1..n; (38)

are satisfied then T, e RP*™ for k =1,...,n and it can be written

as the product

T, =C/By., (39a)
where
C, e RPN B, eR™™ and
rankC, =rank B, =1, k=1...n (39b)

In a similar way as for SISO systems it can be shown that the
matrices



A = blockdiag[l s,

B, n
D eV Cc=[C, CaleRPT, r=>"r
B i=1

n

Irnsn]e M.,

(40)
B=

are a positive realization of the matrix (35).

Therefore, the following theorem has been proved.

Theorem 6. There exists a minimal-phase realization (40) of the
strictly proper transfer matrix (35) if and only if the poles and zeros
are distinct, real, negative and the conditions (38) are satisfied.

For computation of the minimal-phase realization (40) of the transfer
matrix (35) Procedure 1 with some evident modifications can be
applied.

Example 2. Find the minimal-phase realization of the transfer matrix

1 s2+6s+8 s’+5s5+4

T (s) =
P s3+9s? +235+15| s +7s+10 s®+6s+8

. (41)

Using Procedure 1 we obtain the following:
Step 1. In this case the matrix D =0.

Step 2. The poles of (3.21) are s;,=-1, s, =-3, s;=-5 and

the zeros are sii=-2, s=-4, sh=-1,
SQ--2, =5, =2, P-4,
The matrix (41) can be written in the form
s+2)(s+4) (s+1(s+4
1 {( )Ns+4) (s+1)( )](42)

To(®) =
(s+D)(s+3)(s+5)| (S+2)(s+5) (s+2)(s+4)

Step 3. Using (36) and (42) we obtain
Ty = lim(s —5;)Tgp(s)
S8,

1 {(s +2)(s+4)

T (5+3)(5+5)| (s+2)(s+5) (s+2)(s+4) 5:_1_5 43

T, = lim(s —s,)T, (5)
58,

(s+1)(s+4)} ~ 1{3 0}

~ 1 [(s+2)(s+4) (s+D(s+4)]  1[1 2]
T (s+D)(s+5)| (s+2)(s+5) (s+2)(s+4)]_, 4[2 1f
Ty = lim(s —53)T, (S)
~ 1 [(s+2)(s+4) (s+D(s+4)|  1[3 4]
T (s+D)(s+3)|(s+2)(s+5) (s+2)(s+4)|_. 80 3]
(43)
In this case we choose
10 113 0
rankT, =2, T, =C,B,, Cl:{o J, 8125{4 3}
rank T, =2, T, =C,B,, C F 0} B 1{1 2} (44)
2 =& I =Loby, 2:0 1122221;
rank T, =2, T, =C;B;, C —{1 0} B —1[3 4}
374 1374 3T 0 b BTGl 3

Step 4. Using (40) and (44) we obtain the desired realization in the
form

i
A=diggl-1 -1 -3 -3 -5 -5], B=|B, ==
BB

o W A~ DN B~ W
w b~ N DM W O

010101

101010
C:[Cl C2 C3]: .

3. POSITIVE MINIMAL-PHASE REALIZATIONS OF
DISCRETE-TIME LINEAR SYSTEMS

First let us consider the SISO discrete-time linear system with
the transfer function (24). From (24) we have

D= IlimT(z)=h, (46)
Z—>0
and the strictly proper transfer function has the form
To(2)=T(2)-D =C[l,z-A]"'B
by 2"+ +bz+b,  A(z)  (479)
"+a, "t raz+a, d(2)
where
b, =b, —b,a,, k=04,...n-1, (47b)
A(z) =b, 42" +..+bz+Dby. (470)

It is assumed that the poles z,, z,,..., z, and the zeros z{,

0 0
Zz yorny Zn—l

conditions
z,<1, k=1..nand z, <z <z, 4, k=1..n-1. (48)

of (47) are real, positive, distinct and satisfy the

In a similar way as for continuous-time linear systems the strictly
proper transfer function (4.2) can be written in the form

o
-
@)= (492)
k=12~ %
where
T = lim (z—zk)Tsp(z)=n”¢ (49b)
-7

[T@-2)
j=1
J=k

Note that 'Fk >0 for k=1,...,n if and only if the conditions (48)

are satisfied. In this case we can choose €, >0, by, >0 so that
T =Cb., k=1..n (50)

and the matrices

by
A=diaglz; 2z, 2,]eRT", B = b_2 e R,
by
C=[5 ¢ Cple Ry (51)

are a positive realization of the transfer function (47).

753
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By Definition 9 the realization (51) is minimal-phase if the conditions
(48) are satisfied. Therefore, the following theorem has been
proved.

Theorem 7. There exists a minimal-phase realization (51), (46) of
the transfer function (47) if and only if the poles and zeros are real,
positive, distinct and the conditions (48) are satisfied.

For computation of the minimal-phase realization of the transfer
function (14) Procedure 1 with some evident modifications can be
also used.

Example 3. Find the minimal-phase realization of the transfer
function

2
z2°+0.6z-0.17
T(Z) =2 52
(@) 7 -0.4z+0.03 (52

Using Procedure 1 we obtain the following:
Step 1. Using (46) and (52) we obtain

2
=1limT(z) = I|mM 1 (53)

200 250 72 -0.42+0.03

and
= z-0.2

T,(2)=T(z2)-D=———""——. 54
(2 =T(2) 72 -0.47+0.03 &4
Step 2. The poles of (54) are z; =0.1, z, =0.3 and the zero is

The transfer function (54) can be written in the form

z-0.2

Tp(D) = . (59)

(z-0.)(z-0.3)
Step 3. Using (49) and (50) we obtain

T=limE-2)T,(0)=2"22  —05=gp,
51 Z—0.3 0.1
o (56)
T, = lim (2 zz)Tsp(z)—Z— ~0.5=C,b,
z=0.3

and we choose b, =1, b, =1 and ¢, =0.5, ¢, =0.5.
Step 4. Using (51) and (56) we obtain

_for o] o [R] [ ~ . .1
A{O 0.3]8{52}[1}@—[01 Cl=21 1.67)

The desired minimal-phase realization of (52) is given by (53) and
(57).

Now let us consider the MIMO discrete-time linear system with the
strictly proper transfer matrix

N(2)

Top(@)=—+ a(2) e RPN (2), (58a)
where
d(2)=(z-7)(z2—-12,)...Z—-1z,), (58b)
(z-2}).. (z i) (z-220).. (s zpmn)
N(s) = (58¢)

)@z“m

(ZZ)(ZZpl)'(

with distinct real positive poles z;, z,,..., z, and distinct real
0n11 01 0.npm

s 01
positive Zeros z;7 ,..., Zy1 ', Zgm beees Zom
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In a similar way as for continuous-time systems the transfer matrix
(58) can be written in the form

n
=
Tp(2) =D —* (59a)
=1 Z— Zk
where
T = Jim (=274 () - NG (59b)
H(Zk —Zj )
J¢|(
and
rank T, =T, . (60)

In a similar way as for continuous-time systems it can be shown that
T, e RP*™ for k =1,...n if the conditions

Z, zIJ K<z, fori=1..p, j=1..m, k=1,.. (61)

IJ

are satisfied. In this case there exist the matrices C, € RP*™

B, e ™, rank C, =rank B, =T, , k =1,...,n such that

Ti = CiBy . (62)

In a similar way as for continuous-time systems it can be shown that
the matrices
A = blockdiag[ I z; It 2,] e RUT,
P
B=|: |eR"™ C=[C CileRPT =35
k=1

BI’]

are a positive realization of the matrix (58).

Therefore, the following theorem has been proved.

Theorem 8. There exists a minimal-phase realization (63) of the
strictly proper transfer matrix (58) if and only if the poles and zeros
are distinct, real, positive and the conditions (61) are satisfied.

With same evident modifications Procedure 1 can be also used to
compute the positive minimal-phase realization (63) of the transfer
matrix (58).

CONCLUDING REMARKS

The problem of minimal-phase realization for continuous-time
and discrete-time linear systems has been formulated and solved.
Necessary and sufficient conditions for the existence of minimal-
phase realizations for the linear systems have been established
(Theorems 5, 6 and 7, 8). A procedure for computation of the
realizations has been proposed and illustrated by numerical
examples. The considerations can be extended to fractional positive
linear systems without and with delays.
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MINIMALNO-FAZOWE REALIZACJE
DLA DODATNICH UKLADOW
LINIOWYCH

Streszczenie

Pracy zaproponowano nowq metode wyznaczanie
minimalno-fazowych realizacji dla dodatnich ciggtych i
dyskretnych uktadow liniowych. Podano warunki
Konieczne i wystarczajgce na istnienie minimalno-
fazowych realizacji dla tych klas uktadow liniowych.
Podano  procedure wyznaczania tych  realizacji
minimalno-fazowych oraz zlustrowano efektywnosé tej
procedury na przyktadach liczbowych.
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