Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Millions of tons of casting waste are generated annually worldwide, which should be subjected to recycling, as per the principles of circular economy. Spent foundry sands can be used for producing soil substitutes, but the process should yield products with guaranteed biological safety. The goal of this work was to conduct a safety evaluation of soil substitutes produced based on casting and organic waste. Toxicity tests were performed for this purpose, based on measurements involving the germination efficiency and the effect of the studied compositions on the biomass, sprout and root growth of Sinapis alba. In addition, an analysis of the content of chlorophyll A and B and of carotenoids was carried out, as well as a measurement of the lipid peroxidation level (content of malondialdehyde – MDA) to assess the potential oxidative stress in the tested plants. The compositions for soil formation prepared using casting waste as a mineral fraction and organic waste (compost, green waste, biogas plant digestate) had a stimulating effect on the rhizospheric and epigeal part growth of Sinapis alba. The germination efficiency in the prepared soil substitutes exhibited no significant difference from the germination efficiency in the control sample. However, the presence of oxidative stress (increased carotenoid and MDA contents) was found in the substitute containing green waste, which could be the result of water deficiency in the plants growing in this substrate. The complex testing of the compositions prepared based on casting waste (spent foundry sand) proved the validity of using such products as soil substitutes.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
327--335
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
- Central Mining Institute – National Research Institute, pl. Gwarków 1, 40-166 Katowice, Poland
autor
- Institute of Ecology of Industrial Areas, ul. Kossutha 6, 40-844 Katowice, Poland
autor
- Central Mining Institute – National Research Institute, pl. Gwarków 1, 40-166 Katowice, Poland
Bibliografia
- 1. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1. https://doi.org/10.1104/pp.24.1.1
- 2. Borgulat, J., Łukasik, W., Borgulat, A., Nadgórska-Socha, A., Kandziora-Ciupa, M. 2021. Influence of lead on the activity of soil microorganisms in two Beskidy landscape parks. Environmental Monitoring and Assessment, 193, 1-14. https://doi.org/10.1007/s10661-021-09503-2
- 3. Bożym, M. 2018. Zmiana wizerunku miasta w świetle likwidacji hałd pohutniczych. Mazowsze Studia Regionalne t. 24, s. 49–61.
- 4. Bożym, M. 2020. Assessment of phytotoxicity of leachates from landfilled waste and dust from foundry. Ecotoxicology, 29(4), 429-443.. https://doi.org/10.1007/s10646-020-02197-1
- 5. Chmielewski, J., Gworek, B., Florek-Łuszczki, M., Nowak-Starz, G., Wójtowicz, B., Wójcik, T., Szpringer, M. 2020. Metale ciężkie w środowisku i ich wpływ na zdrowie człowieka. Przemysł Chemiczny, 99.
- 6. Dayton, E.A., Whitacre, S.D., Dungan, R.S., Basta, N.T. 2010. Characterization of physical and chemical properties of spent foundry sands pertinent to beneficial use in manufactured soils. Plant and soil, 329, 27-33. https://link.springer.com/article/10.1007/s11104-009-0120-0
- 7. Pace, D.D., Miguel, R.E., Di Rocco, H.O., García, F.A., Pardini, L., Legnaioli, S., ... Palleschi, V. 2017. Quantitative analysis of metals in waste foundry sands by calibration free-laser induced breakdown spectroscopy. Spectrochimica acta part B: Atomic spectroscopy, 131, 58-65. https://doi.org/10.1016/j.sab.2017.03.007
- 8. Dungan, R.S., and Dees, N.H. 2009. The characterization of total and leachable metals in foundry molding sands. Journal of environmental management, 90(1), 539-548. https://doi.org/10.1016/j.jenvman.2007.12.004
- 9. Dungan, R.S., Kim, J.S., Weon, H.Y., Leytem, A.B. 2009. The characterization and composition of bacterial communities in soils blended with spent foundry sand. Annals of microbiology, 59, 239-246. https://doi.org/10.1007/BF03178323
- 10. Fu, Z., & Xi, S. 2020. The effects of heavy metals on human metabolism. Toxicology mechanisms and methods, 30(3), 167-176. https://doi.org/10.1080/15376516.2019.1701594
- 11. Gjorgieva Ackova, D. 2018. Heavy metals and their general toxicity on plants. Plant Science Today, 5(1), 15-19.
- 12. Głodniok M., Korol J., Zawartka P., Deska M., Krawczyk B. 2019. Sposób otrzymywania nawozu organicznego z ustabilizowanych komunalnych osadów ściekowych oraz nawóz organiczny z ustabilizowanych komunalnych osadów ściekowych, Pat.233754.
- 13. Głodniok M., Borgulat A. (2023. Sposób otrzymywania mieszaniny glebotwórczej oraz mieszanina glebotwórcza, P.444410.
- 14. Hodges, D.M., DeLong, J.M., Forney, C.F., Prange, R.K. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604-611. https://doi.org/10.1007/s004250050524
- 15. Ji, S., Wan, L., Fan, Z. 2001. The toxic compounds and leaching characteristics of spent foundry sands. Water, Air, and Soil Pollution, 132, 347-364. https://doi.org/10.1023/A:1013207000046
- 16. Juknys, R., Vitkauskaitė, G., Račaitė, M., Venclovienė, J. 2012. The impacts of heavy metals on oxidative stress and growth of spring barley. Central european journal of biology, 7, 299-306. https://doi.org/10.2478/s11535-012-0012-9
- 17. Khayatnezhad, M., and Gholamin, R. 2021. The effect of drought stress on the superoxide dismutase and chlorophyll content in durum wheat genotypes. Advancements in Life Sciences, 8(2), 119-123.
- 18. Krzyżak, J.; Rusinowski, S.; Sitko, K.; Szada-Borzyszkowska, A.; Borgulat, J.; Stec, R.; Hanslin, H.M.; Pogrzeba, M. 2023. The effect of combined drought and temperature stress on the physiological status of calcareous grassland species as potential candidates for urban green infrastructure. Plants, 12, 2003. https://www.mdpi.com/2223-7747/12/10/2003
- 19. Layman’s report 2018 – Reuse of surplus foundry sand by composting. LIFE13 ENV/FI/285. [Online:] https:// life-foundrysand.com/dissemination-materials/final-report [Accessed: 2021-07-21].
- 20. Lindsay, B.J. and Logan, T.J. 2005. Agricultural reuse of foundry sand. Review. Journal of Residuals Science and Technology, t. 2, wyd. 1, s. 3–12
- 21. Logan, T.J. and Lindsay, B.J. 2001. Assessment of food–chain risk from GM Powertrain exempt foundry sand (FS) used in blended topsoil. Report, SNR, Ohio State Univ., USA
- 22. Modern Casting 2017 – 51th Modern Casting Production. Census of World Casting Production, December 2017, pp. 24–28.
- 23. Pietr, S. J. (2018. Materia organiczna bazą żyzności gleby. Top Agrar Polska, (01).
- 24. PN-EN 15934:2013-02. Osady ściekowe, uzdatnione bioodpady, gleba oraz odpady -- Oznaczanie suchej masy poprzez oznaczanie zawartości suchej pozostałości lub zawartości wody
- 25. PN-EN 16171:2017-02 (R/rR) ICP- MS. Osady ściekowe, uzdatnione bioodpady oraz gleba -- Oznaczanie zawartości pierwiastków z zastosowaniem spektrometrii mas z plazmą wzbudzoną indukcyjnie (ICP-MS).
- 26. PN-EN 16174:2012. Osady ściekowe, uzdatnione bioodpady oraz gleba -- Roztwarzanie frakcji pierwiastków rozpuszczalnych w wodzie królewskiej
- 27. PN-EN ISO 10390:1997. Jakość gleby -- Oznaczanie pH
- 28. PN-EN ISO 11269-1:2013-06 Jakość gleby. Oznaczanie wpływu zanieczyszczeń na florę glebową -- Metoda pomiaru hamowania wzrostu korzeni.
- 29. PN-EN ISO 11269-2:2013-06 Jakość gleby. Oznaczanie wpływu zanieczyszczeń na florę glebową -- Wpływ związków chemicznych na wschody i wzrost roślin wyższych.
- 30. PN-EN ISO 11885:2009. Jakość wody -- Oznaczanie wybranych pierwiastków metodą optycznej spektrometrii emisyjnej z plazmą wzbudzoną indukcyjnie (ICP-OES)
- 31. PN-ISO 10694:2002. Jakość gleby -- Oznaczanie zawartości azotu całkowitego po suchym spalaniu („analiza elementarna”)
- 32. PN-ISO 15178:2004. Jakość gleby -- Oznaczanie siarki całkowitej po suchym spalaniu
- 33. Polish Monitor (2016) – Resolution No.88 of the Council of Ministers of 1 July 2016 on the National Waste Management Plan 2022 (Polish Monitor, 784) pp. 239–246. https://doi.org/10.1007/BF03178323
- 34. Rachoski, M., Gazquez, A., Calzadilla, P., Bezus, R., Rodriguez, A., Ruiz, O., ... Maiale, S. 2015. Chlorophyll fluorescence and lipid peroxidation changes in rice somaclonal lines subjected to salt stress. Acta Physiologiae Plantarum, 37, 1-12. https://doi.org/10.1007/s11738-015-1865-0
- 35. Raport EPA 2014. Risk Assessment of Spent Foundry Sands In Soil-Related Applications. Evaluating Silica-based Spent Foundry Sand From Iron, Steel, and Aluminum Foundries. EPA-530-R-14-003. October 2014.
- 36. Rosalie, R., Joas, J., Deytieux-Belleau, C., Vulcain, E., Payet, B., Dufossé, L., Léchaudel, M. 2015. Antioxidant and enzymatic responses to oxidative stress induced by pre-harvest water supply reduction and ripening on mango (Mangifera indica L. cv.‘Cogshall’) in relation to carotenoid content. Journal of Plant Physiology, 184, 68-78. https://doi.org/10.1016/j.jplph.2015.05.019
- 37. Rozporządzenie Ministra Środowiska z dnia 1 września 2016 r. w sprawie sposobu prowadzenia oceny zanieczyszczenia powierzchni ziemi [Dz.U. 2016 poz. 1395]
- 38. Shah, K., Kumar, R.G., Verma, S., Dubey, R.S. 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant science, 161(6), 1135-1144. https://doi.org/10.1016/S0168-9452(01)00517-9
- 39. Šimanský, V., Juriga, M., Jonczak, J., Uzarowicz, Ł., Stępień, W. (2019. How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma, 342, 75-84. https://doi.org/10.1016/j.geoderma.2019.02.020
- 40. Sorvari, J. and Wahlstrom, M. 2014. Industrial By–products. Chapter 17. Part II. Recycling. Application & Technology. Handbook of Recycling, Elsevier, pp. 231–253. https://doi.org/10.1016/B978-0-12-396459-5.00017-9
- 41. Swapnil, P., Meena, M., Singh, S.K., Dhuldhaj, U.P., Marwal, A. 2021. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Current Plant Biology, 26, 100203. https://doi.org/10.1016/j.cpb.2021.100203
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fcdf1be3-82bb-4a1c-8d32-52d3dc939994