PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the residual magnetic field measurement system for early identification of railway defects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents research on the capability of the residual magnetic field (RMF) measurement system to be applied to the railway inspection for the early non-destructive detection of defects. The metal magnetic memory (MMM) phenomena are analysed using normal component Hy of self-magnetic flux leakage (SMFL), and its tangential component Hx, as well as their respective gradients. The measurement apparatus is described together with possible factors that may affect the results of measurement. The Type A uncertainty estimation and repeatability tests were performed. The results demonstrate that the system may be successfully applied to detection of head check flaws.
Rocznik
Strony
687--696
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wzory
Twórcy
  • Kazimierz Pulaski University of Technology and Humanities in Radom, Faculty of Technical Engineering, Malczewskiego 29, 26-600 Radom, Poland
  • Kazimierz Pulaski University of Technology and Humanities in Radom, Faculty of Technical Engineering, Malczewskiego 29, 26-600 Radom, Poland
  • Kazimierz Pulaski University of Technology and Humanities in Radom, Faculty of Technical Engineering, Malczewskiego 29, 26-600 Radom, Poland
Bibliografia
  • [1] Magel, E., Mutton, P., Ekberg, A., Kapoor, A. (2016). Rolling contact fatigue, wear and broken rail derailments, Wear 366-367, 249-257.
  • [2] Bojarczak, P. (2014). Detection of squat defects in railway. Welding Technology Review, 86(10), 12-16.
  • [3] Lesiak, P., Wlazło, M. (2014). Detection of head checking flaws in railway rails using an optical method. Scientific works of the Warsaw University of Technology, 104, 33-42.
  • [4] Lesiak, P., Szumiata, T., Wlazło, M. (2015). Laser scatterometry for detection of squat defects in railway rails. The Archives of Transport, 33(1), 47-56.
  • [5] Tang, Ch., Tian, G. Y., Chen, X., Wu, J., Li, K., Meng, H. (2017). Infrared and visible images registration with adaptable local-global feature integration for rail inspection. Infrared Physics & Technology, 87, 31-39.
  • [6] Bojarczak, P. (2013). Visual diagnostics of the rails. Radom: ITE - PIB Radom.
  • [7] Hansen, J., Calvert, J. (2002). Eddy current testing. A solution to detecting rolling contact fatigue in rail? Proc. of 5th international conference and exhibition, London, UK, 3-4 July.
  • [8] Meierhofer, R., Pohl, R. (2006). Head Check Measurement - a Fully-operational System on a Rail Grinder. Proc. of World Congress on Railway Research, Montreal, Canada, 2006.
  • [9] Jessop, C., Ahlström, J., Hammar, L., Fæster, S., Danielsen, H. K. (2016). 3D characterization of rolling contact fatigue crack networks. Wear, 366-367, 392-400.
  • [10] Popović, Z., Lazarević, L., Brajović, L., Vilotijević, M. (2015). The Importance of Rail Inspections in the Urban Area - Aspect of Head Checking Rail Defects. Procedia Engineering, 117, 596-608.
  • [11] Roskosz, M., Fryczkowski, K. (2015). Analysis of the possibility of identification of stress state based on residual magnetic field of ferromagnetic material. Welding Technology Review, 87(12), 75-77.
  • [12] Bao, Sh., Fu, M., Lou, H., Bai, Sh. (2017). Defect identification in ferromagnetic steel based on residual magnetic field measurements. J. Magnetism Magn. Mater., 441(1), 590-597.
  • [13] Yao, K., Shen, K., Wang, Zh. D., Wang, Y. Sh. (2014). Three-dimensional finite element analysis of residual magnetic field for ferromagnets under early damage. J. Magnetism Magn. Mater., 354(1), 112-118.
  • [14] Wilson, J. W., Tian, G. Y., Barrans, S. (2007). Residual magnetic field sensing for stress measurement. Sensors and Actuators A: Physical, 135(2), 381-387.
  • [15] Gontarz, Sz., Szulim, P., Lei, Y. (2018). Identification of magnetomechanical phenomena in a degradation process of loaded steel elements. J. Magnetism Magn. Mater., 467(1), 29-36.
  • [16] Wang, Z. D., Yao, K., Deng, B., Ding, K. Q. (2010). Quantitative study of metal magnetic memory signal versus local stress concentration. NDT & E International, 43(6), 513-518.
  • [17] Dubov, A. (2006). Principle features of metal magnetic memory method and inspection tools as compared to known magnetic NDT methods. CINDE Journal, 27(3), 16-20.
  • [18] Zhu, B., Lo C.C.H., Lee, S. J., Jiles, D. C. (2001). Micromagnetic modeling of the effects of stress on magnetic properties. J. Appl. Phys., 89, 7009-7011.
  • [19] Jiles, D. C., Devine, M. K. (1994). Recent developments in modeling of the stress derivative of magnetization in ferromagnetic materials. J. Appl. Phys., 76(10), 7015-7017.
  • [20] Szewczyk, R., (2016). Stress-induced anisotropy and stress dependence of saturation magnetostriction in the Jiles-Atherton-Sablik model of the magnetoelastic Villari effect. Arch. Metall. Mater., 61, 607-612.
  • [21] Siemko, A., Lachowicz, H. K. (1990). On the origin of stress-dependent saturation magnetostriction in metallic glasses. J. Magn. Magn. Mater., 89, 21-25.
  • [22] Szewczyk, R. (2016). Stress-induced anisotropy and stress dependence of saturation magnetostriction in the Jiles-Atherton-Sablik model of the magnetoelastic Villari effect. Arch. Metall. Mater., 61(2), 607-612.
  • [23] Dubov, A. A., Dubov, A. A., Kolokolnikov, S. M. (2012). Metal Magnetic Memory method and control devices. Moscow: Spectrum.
  • [24] Piotrowski, L., Augustyniak, B., Chmielewski M., Hristoforou, E. V., Kosmas, K. (2010). Evaluation of Barkhausen Noise and Magnetoacoustic Emission Signals Properties for Plastically Deformed Armco Iron. IEEE Trans. Magn., 46(2), 239-242.
  • [25] Fiorillo, F., Küpferling M., Appin, C. (2018). Magnetic Hysteresis and Barkausen Noise in Plastically Deformed Steel. Metals, 8, 15.
  • [26] JCGM 100:2008. Evaluation of measurement data - Guide to the expression of uncertainty in measurement.
  • [27] Dietrich, E., Schultze, A. (2011). Measurement Process Qualification: Gauge acceptance and measurement uncertainty according to current standards. München: Hanser.
  • [28] Rucki, M., Barisic, B. (2009). Response Time of Air Gauges with Different Volumes of the Measuring Chambers. Metrol. Meas. Syst., 16(2), 289-298.
  • [29] Joubert, J. W., Meintjes, S. (2015). Repeatability & reproducibility: Implications of using GPS data for freight activity chains. Transportation Research Part B: Methodological, 76, 81-92.
  • [30] Cepova, L., Kovacikova, A., Cep, R., Klaput, P., Mizer, O. (2018). Measurement System Analyses - Gauge Repeatability and Reproducibility Methods. Meas. Sci. Rev., 18(1), 20-27
Uwagi
EN
This work was supported by the University of Technology and Humanities in Radom under statutory grant 3179/25/P-DBUPB/2015/063.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fcdd0959-36ec-4c3c-89ef-e48e3817ce4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.