Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Developments and Applications of Nuclear Technologies – NUTECH-2017 (10–13. 10. 2017, Kraków, Poland)
Języki publikacji
Abstrakty
Zirconium alloys used widely in nuclear industry as fuel claddings are prone to violent oxidation in water steam atmosphere in the case of loss of coolant accident (LOCA). Accompanying generation of large quantities of heat and explosive gaseous hydrogen may lead to destruction of nuclear core. As the safety of nuclear installations is of primary importance, intensive research works are conducted on the development of so-called accident tolerant fuels much less prone to oxidation. In this paper, the application of external zirconium-silicide coatings deposited by magnetron sputtering is proposed. The preliminary results of their synthesis and studies of air oxidation properties at elevated temperatures are presented.
Czasopismo
Rocznik
Tom
Strony
73--79
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
- Institute of Nuclear Chemistry and Technology 16 Dorodna St., 03-195 Warsaw, Poland
autor
- Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research 141980 Dubna, Moscow region, Russia
autor
- Institute for Sustainable Technologies 6/10 K. Pułaskiego St., 26-600 Radom, Poland
autor
- Institute of Nuclear Chemistry and Technology 16 Dorodna St., 03-195 Warsaw, Poland
autor
- Institute for Sustainable Technologies 6/10 K. Pułaskiego St., 26-600 Radom, Poland
autor
- Institute of Nuclear Chemistry and Technology 16 Dorodna St., 03-195 Warsaw, Poland
Bibliografia
- 1. IAEA. (2017). Nuclear technology review 2017. Vienna: International Atomic Energy Agency. (IAEA/NTR/2017).
- 2. Pioro, I. (2016). Handbook on generation IV nuclear reactors. Waltham, MA: Elsevier Ltd.
- 3. Terrani, K. T., Kiggans, J. O., Silva, C. M., Shih, D., Katoh, Y., & Snead, L. L. (2015). Progress on matrix SiC processing and properties for fully ceramic microencapsulated fuel form. J. Nucl. Mater., 457, 9–17.DOI: 10.1016/j.jnucmat.2014.10.034.
- 4. IAEA. (2014). Accident tolerant fuel concepts. Proceeding of the technical meeting held at the OakRidge National Laboratories, USA, 13–16 October 2014. Vienna: International Atomic Energy Agency. (IAEA-TECDOC-1797).
- 5. Zinkle, S. J., Terrani, K. A., Gehin, J. C., Ott, L. J., & Snead, L. L. (2014). Accident tolerant fuels. A perspective. J. Nucl. Mater., 448, 374–379.
- 6. Morell, P. (2015). Phase 1A Final Report for the AREVA Team Enhanced Accident Tolerant
- Fuels Concepts. (Report DOE-AFS-0000567). DOI: 10.2172/1172983.
- 7. Pint, B. A., Terrani, K. A., Yamamoto, Y., & Snead, L. L. (2015). Material selection for accident tolerant fuel cladding. Metall. Mater. Trans. E, 2(3), 190–196.DOI: 10.1007/s40553-015-0056-7.
- 8. Kim, H., Yang, J., Kim, W., & Koo, Y. (2016). Development status of accident-tolerant fuel for light water reactors in Korea. Nucl. Eng. Technol., 48, 1–15.https://doi.org/10.1016/j.net.2015.11.011.
- 9. Koo, Y., Yang, J., Park, J., Kim, K., Kim, H., Kim, D.,Jung, Y., & Song, K. (2014). KAERI’s development of LWR accident-tolerant fuel. Nucl. Technol., 186(2), 295–304. http://dx.doi.org/10.13182/NT13-89.
- 10. Barrett, K., Bragg-Sitton, S., & Galicki, D. (2012). Advanced LWR nuclear fuel cladding system development trade-off study. Idaho National Laboratory. (INL/EXT-12-27090).
- 11. Kurata, M. (2016). Research and development methodology for practical use of accident tolerant fuel in light water reactors. Nucl. Eng. Technol., 48, 26–32.DOI: https://doi.org/10.1016/j.net.2015.12.004.
- 12. Yueh, K., & Terrani, K. A. (2014). Silicon carbide composite for light water reactor fuel assembly applications. J. Nucl. Mater., 448, 380–388. http://dx.doi.org/10.1016/j.jnucmat.2013.12.004.
- 13. Idarraga-Trujillo, I., Le Flem, M., Brachet, J., Le Saux, M., Hamon, D., Mueller, S., Vanderberghe, V., Tupin, M., Papin, E., Monsierot, E., Billard, A., & Schuster, F. (2013). Assessment at CEA of coated nuclear fuel cladding for LWRs with increased margins in LOCA and beyond LOCA conditions. In Top Fuel 2013 September 15–19, 2013, Charlotte, NC, USA (pp. 860–867).
- 14. Rebak, R., Terrani, K., Gassmann, W. P., & Williams, J. B. (2017). Improving nuclear Power plant safety with FeCrAl alloy fuel cladding. MRS Adv., 2(21/22), 1217–1224. https://doi.org/10.1557/adv.2017.5.
- 15. Terrani, A. K., Pint, B. A., Kim, Y. J., Unocic, K. A., Silva, C. M., Meyer III, H. M., & Rebak, R. B. (2016). Uniform corrosion of FeCrAl alloys in LWR coolant environments. J. Nucl. Mater., 479, 36–47. http://dx.doi.org/10.1016/j.jnucmat.2016.06.047.
- 16. Yamamoto, Y., Pint, B. A., Terrani, K. A., Field, K.G., Yang, Y., & Snead, L. L. (2015). Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors. J. Nucl. Mater., 467, 703–716. http://dx.doi.org/10.1016/j.jnucmat.2015.10.019.
- 17. Younker, M., & Fratoni, M. (2016) Neutronic evaluation of coating and cladding materials for accident tolerant fuels. Prog. Nucl. Energy, 88, 10–18. http://dx.doi.org/10.1016/j.pnucene.2015.11.006.
- 18. Tang, C., Stueber, M., Seifert, H. J., & Steinbruck, M. (2017). Protective coatings on zirconium-based alloys as accident-tolerant fuels (ATF) claddings. Corros. Rev.,35(3), 141–165. DOI: 10.1515/corrrev-2017-0010.
- 19. Starosta, W., Barlak, M., Buczkowski, M., Kosińska, A., Sartowska, B., Waliś, L., & Janiak, T. (2015). Analiza mechanizmów tworzenia się oraz właściwości warstw tlenkowych powstających w wyniku rozkładu wody na powierzchni koszulek cyrkonowych oraz zbadanie wpływu modyfikacji struktury warstwy wierzchniej koszulek na procesy generacji wodoru. In J. Michalik, & R. Kocia (Eds.). Analiza procesów generacji wodoru w reaktorze jądrowym w trakcie normalnej eksploatacji i w sytuacjach awaryjnych z propozycjami działań na rzecz podniesienia poziomu bezpieczeństwa jądrowego (pp. 55–72). Warszawa: Institute of Nuclear Chemistry and Technology.
- 20. Mariani, R., Medvedev, P., Porter, D. L., Hayes, S. L., Cole, J. I., & Bai, X. (2013). Novel accident-tolerant fuel meat and cladding. In Top Fuels, September 15–19, 2013, Charlotte, NC, USA (pp. 763–770).
- 21. Yeom, H., Maier, B., Mariani, R., Bai, D., Fronek, S.,Xu, P., & Sridharan, K. (2017). Magnetron sputter deposition of zirconium-silicide coating for mitigating high temperature oxidation of zirconium-alloy.Surf. Coat. Technol., 316, 30–38. http://dx.doi.org/10.1016/j.surfcoat.2017.03.018.
- 22. Kaiser, A., Lobert, M., & Telle, R. (2008). Thermal stability of zircon (ZrSiO4). J. Eur. Ceram. Soc., 28,2199–2211. DOI: 10.1016/j.jeurceramsoc.2007.12.040.
- 23. Lavrenko, V. A., Shemet, V. Zh., & Goncharuk, A. V. (1985). Studies on mechanism of high-temperature oxidation of molybdenium, tungsten and zirconium disilicides by differential thermal analysis. Thermochim.Acta, 93, 501–504. https://doi.org/10.1016/0040-6031(85)85126-1.
- 24. Ueno, S., Ogji, T., & Lin, H. T. (2007). Corrosion and recession behavior of zircon in water vapor environment at high temperature. Corros. Sci., 49(3), 1162–1171. https://doi.org/10.1016/j.corsci.2006.08.013.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fcd2cf63-2c81-400d-91f3-22338d6d7115