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Th e paper focuses on a  linear diff erence equation depending on parameters. Th e equation is related to Good win’s theory of 

extrapolative expectations. Th e stability region of the equation is investigated. Conditions for asymptotic stability are formulated 

and presented as an optimisation problem, which is further analysed. Despite employing state-of-the-art solvers, numerical results 

have turned out to be too ambiguous to provide the basis for definite conclusions about the investigated stability region. 
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Introduction and preliminary remarks 

We will investigate equations related to Goodwin’s theory 

of extrapolative expectations. Th e reader can find 

background information on market price expec tations in 

[1] and details on Goodwin’s extrapolative approach in 

his paper [2]. 

Let x be a variable characterizing the state of a system. 

We consider an agent that is trying to predict the value 

x(t) of x at time t. One should observe that x(t) does not 

denote a stochastic pro cess for the moment t (which is 

actually a  random variable), but the most probable 

realization of the stochastic process at the moment t, 

which is a real number. 

Let xE(t) denote the expected (by the agent) value 

of x, at time t. We postulate that the actual value x(t) of 

x at time t is influenced1 by the expected value xE(t) of 

the variable x. Th e postulate is widely ac cepted2 by 

economists. A  simple version of the pos tulate can be 

stated as the assumption that 

    x(t) = axE(t) + b, (*) 

1 We can consider x(t) as a given state and xE(t) can be perceived 

as a transition matrix in Markov process theory. 
2 See e.g. [3].

Th e main purpose of the present paper is to exam ine 

the case where the parameters a, b are unknown. Th en 

various rules defining xE(t) can be applied. We will 

consider causal rules, i.e. we will assume that xE(t) can 

be generated using only the past values of x(t). 

Th e simplest way of estimating xE(t) is to assume 

that xE(t) = x(t — 1), which means that estimation of 

x(t) is based on exactly one previous value of x. It follows 

that 

x(t) = ax(t — 1) + b, 

for t = 0, 1,... Th is diff erence equation is asympto -

tically stable [4] if and only if a  (−1, 0), since we 

only  consider a  < 0. Observe also that the equili-

brium point of the above equation coincides with

for t = 0, 1, . . .. Here a, b ∈ R, and we assume in what
follows that a < 0.

When a, b are known, one can “guess” x(t). In that
case the proper choice of xE(t) is the number x = b

1−a ,
since

a
b

1 − a
+ b =

b
1 − a

,

i.e. x(t) = xE(t) = x. The so-defined x is called the
equilibrium state of our system (∗), since it charac-
terizes the case where expected and actual values of
x are identical.
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It is also remarkable that when the estimate xE(t) of 

x(t) is determined using only x(t — 1) value, the 

corresponding diff erence equation can be stable for a  

(−1, 0), and when using two historical values of x the 

equation is stable for a  (−3, 0). 

A question that naturally arises is whether or not the 

use of more than two past values of the variable x to 

obtain xE(t) results in a  greater range of parame ter 

values a for which the equation is asymptotically stable. 

Estimation based on three past values 

Let us consider a  more complex scenario, when esti-

mation of x(t) is based on three past values: x(t — 1), x(t 

— 2) and x(t — 3). Namely, we assume that the equa-

tion linking xE(t) with x(t — 1), x(t — 2) and x(t — 3) 

is as follows: 

Using the relation x(t) = axE(t) + b, we obtain 

where  = |a| (as usual, we are considering only a < 0). 

Our aim is to find the largest value of  satisfy ing 

the above inequalities for some  and . Solving these 

inequalities directly seems to be difficult, so instead we 

employ numerical methods to determine the largest . 

Th e rest of the paper will be devoted to numeri cal 

experiments that have been carried out in order to find 

the appropriate value of . Th erefore, the following 

optimisation problem will been analysed: 

Since the above formulation of the optimisation problem 

contains weak inequalities, it may happen that the 

the equilibrium point of system (∗) i.e. with x = b
1−a .

Hence, for all a ∈ (−1, 0), x(t) tends to x, indepen-
dently of the initial condition x(−1).

Consider now a more sophisticated estimate of
x(t). For this, let us assume that estimation is based
on two historical values: x(t − 1) and x(t − 2). More
precisely, we consider

xE(t) = x(t − 1) + ρ(x(t − 1) − x(t − 2));

here ρ ∈ R is a parameter, to be determined.
Using the relation x(t) = axE(t)+b, we obtain (for

t = 0, 1, . . .)

x(t) = a[x(t − 1) + ρ(x(t − 1) − x(t − 2))] + b.

We rewrite the above difference equation in the fol-
lowing form:

x(t) = a(1 + ρ)x(t − 1) − aρx(t − 2) + b.

It is easy to check that the equilibrium point of
the equation coincides with x = b

1−a . The equation
is asymptotically stable if and only if the roots of its
characteristic equation λ2−a(1+ρ)λ+aρ = 0 lie in the
open unit disc of C. The dependency of the location
of roots of the characteristic equation on the parame-
ter ρ was extensively investigated by R. M.Goodwin
in 1947, as presented in monograph [5]. It happens
that for ρ = − 1

3 the difference equation is asymptot-
ically stable, for all a ∈ (−3, 0).

Summing up, the above paragraph establishes
that for any a ∈ (−3, 0) the equation

x(t) = a[x(t − 1) − 1
3

(x(t − 1) − x(t − 2))] + b,

is always asymptotically stable. It is essential to ob-
serve that for a � −3 the equation is never asymp-
totically stable, regardless of ρ.

xE(t) = x(t−1)+ρ(x(t−1)−x(t−2))+γ(x(t−2)−x(t−3));

here ρ, γ ∈ R are arbitrary parameters.

x(t) = a[x(t−1)+ρ(x(t−1)−x(t−2))+γ(x(t−2)−x(t−3))]+b.
(∗∗)

One can rewrite the above difference equation in the
following form:

x(t) = a(1+ ρ)x(t − 1)+ a(γ − ρ)x(t − 2)− aγx(t − 3)+ b,

where t = 0, 1, . . .. The equilibrium point of the equa-
tion remains the same as before, namely x = b

1−a . The
characteristic polynomial of (∗∗) is as follows:

λ3 − a(1 + ρ)λ2 − a(γ − ρ)λ + aγ.

Finding explicit relation between parameters ρ
and λ and the roots of characteristic polynomial
is possible, but difficult. On the other hand, it is
straightforward to formulate simple necessary and
sufficient conditions for asymptotic stability of the
above difference equation.

For this, let us recall (see e. g. [6], [7, Ch. 3.5])
that for a third-degree polynomial P(λ) = a0 + a1λ +
a2λ

2 + a3λ
3, the necessary and sufficient conditions

for all its roots to be located in the open unit disc of
C are as follows:

a0 + a1 + a2 + a3 > 0,
− a0 + a1 − a2 + a3 > 0,
|a0| < a3,

a2
0 − a2

3 < a0a2 − a1a3.

Applying the above conditions to the difference
equation (∗∗) we obtain the inequalities

α > 0,
α(2ρ − 2γ + 1) < 1,

α2γ2 < 1,

α2γ2 − 1 < −α2γ(1 + ρ) − α(γ − ρ),

maximize α

subject to α � 0,
α(2ρ − 2γ + 1) � 1,

α2γ2 � 1,

α2γ2 − 1 + α2γ(1 + ρ) + α(γ − ρ) � 0.
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solution  of the optimisation problem lies at the 

boundary of the stability region. 

Numerical experiments 

Th e above formulated optimisation problem was, 

initially, formulated as a problem using MATLAB and 

YALMIP. YALMIP is a MATLAB package that al lows 

for fairly simple representation of numerous kinds of 

optimisa tion problems and has provisions for solving 

them using various solvers available in MATLAB. 

It  allows for easy solver-change, without the need to 

change original problem’s formulation according to 

solver’s expectations. 

MATLAB with fmincon 

Th e first attempt to solve the problem was to use de fault, 

built-in, MATLAB procedure fmincon, which is a gene-

ral conditional extremum-finding procedure. It uses the 

trust region reflective algorithm by de fault. 

With default settings, the trust region reflec tive 

algorithm states that the point (, , ) = (21.3087, 

−0.0469, −0.5235) is the solution to the op timisation 

problem. Th e very same point is returned by the active 

set algorithm. 

Th e other two algorithms (sqp and interior point) 

supported by fmincon produce worse results. Th e sqp 

finds the obviously worse solution (, , ) = (7.3302, 

−0.1364, −0.5682), while the interior point al gorithm 

cannot find any solution exceeding its limi tations on 

the  number of iterations or function evalu ations 

(by default set to 1000 and 3000, respectively). Raising 

the limits gave no new results, as it has still reached 

them. 

However, if we add an additional constraint ( = 0 or 

 = −0.0469) we observe a diff erent behaviour. 

In the case  = 0, fmincon found the optimal so lution 

at (, , ) = (3, 0, −0.3333), which agrees with analytical 

calculations. 

More surprising result was obtained for the prob lem 

with the additional constraint  = −0.0469. One could 

expect the solver to return  = 21.3087, or at least a very 

similar value. However, it turned out that the solution 

calculated by fmincon is quite diff erent. More precisely 

the obtained solution was (, , ) = (3.6928, −0.0469, 

−0.4115). 

It has to be emphasised that fmincon does not 

report any numerical problems (assuming trust region 

reflective algorithm) during calculations and presents 

a  solution of the optimisation problems without 

any  information that could raise doubts about its 

correctness. 

MATLAB with GloptiPoly3 

Th e next attempt was taken using a  specialised li brary 

called GloptiPoly3. It is supposed to solve optimisation 

problems with the objective function and constraints 

being polynomials. Th e library is described in [8], while 

the algorithm it uses (a relax ation that can be formulated 

as an SDP problem) can be found in [9]. Once the 

problem is formu lated in terms of SDP, GloptiPoly3 

solves it using any semidefinite solver, usually either 

SeDuMi or SDPT3 (see [10] and [11], respectively). 

At first the base optimisation problem (with out 

additional constraints on ) was formulated and solved 

with GloptiPoly3 (both SeDuMi and SDPT3 were used 

as semidefinite solvers). However, both failed to find an 

optimal solution, returning after long calculations and 

numerous iterations with er rors: run into numerical 

problems and stop: lack of progress in dual infeas, homrp 

= Inf (SeDuMi and SDPT3, respectively). Relaxations of 

various orders were used as well, giving no improvement 

in the qual ity of results, only lengthening the computation 

time. 

One should note that GloptiPoly3 was able to solve 

the optimisation problem with additional con straints. In 

the case when  = 0 both semidefinite engines found the 

optimal solution. Introducing the additional constraint 

 = −0.0469 results in Glop tiPoly3 finding an acceptable 

(i.e. feasible) solution (, , ) = (21.3220, −0.0469, 

−0.5274). 

Ipopt 

Finally, the optimisation problem in question was 

implemented using the C language library called Ipopt. 

It is a powerful library (developed by IBM) described in 

[12] that solves many kinds of optimisation prob lems 

and can be directly interfaced with the C lan guage. We 

have encountered severe numerical issues during an 

attempt to solve the problem. 

The problem without extra constraints was 

particularly difficult to deal with. Both standard and 

alternative (Mehrotra predictor-corrector) Ipopt’s 

algorithms failed to find the solution. Changing strat egy 

for a barrier parameter (mu_strategy) or refor mulating 

the problem as min − made no improve ment. In each 

case results were diff erent and confus ing. 

Interesting results appeared after introducing the 

extra constraint   4 · 106. In that case, Ipopt 

erroneously reported (, , ) = (4 · 106, −2.5·10−7, −0.5) 

as the optimal solution. It appears that the constraint 

(2— 2+ 1) 1 is not satisfied by the above solution! 

Unfortunately, Ipopt does not report any problems 

during computations, what leads to an illusion that it is 

indeed a correct solution. In depth analysis showed that 

the error is caused by numerical problems that rose in 

the constraint evaluation. It turned out that the sequence 

Let us note that (α, γ, ρ) = (3, 0,− 1
3 ) belongs to the

feasible region of the above optimisation problem.
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of operations (−1 + small_number + 1) gives incorrect 

result. Changing the order fixes the issue, but then Ipopt 

does not converge for the prob lem. It is surprising, 

though, that the order of addi tion operations has so 

much eff ect on the final result. It suggests a  very 

unfortunate numerical character istic of the considered 

optimisation problem. 

Several other values of  were tested as an up per 

bound and various settings (algorithm, barrier parameter 

strategy, etc.) were considered. Th ose tests resulted in 

Ipopt presenting both feasible and infeasible solutions 

that required manual assessment of whether all 

constraints are satisfied. 

Finally, after introducing the extra constraint  

10000 Ipopt found a solution (reported as op timal) that 

turned out to be feasible. All previous problems urged 

the need to ensure that it is cor rect, thus it has been 

double-checked that (, , ) = (10000, −0.0001, 

−0.50005) indeed satisfies all condi tions. 

Summing up, the optimisation problem is ill-condi-

tioned and even its slight seemingly equivalent reformula-

tion can lead to unexpected results. It ap pears to be very 

difficult to take eff ective counter measures against these 

problems and properly for mulate the problem in C 

language to avoid various (hard to predict) errors. 

Concluding remarks 

In light of the numerical experiments described above 

one could hypothesize that the original optimisation 

problem is unbounded. However, all tested solvers failed 

to give a  definitive answer to the problem, re turning 

poor or even infeasible solutions. It is sur prising that 

GloptiPoly3 — a solver supposed to deal with this kind 

of problems — could not cope with it. 
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