Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider an ill-posed linear homogeneous fourth-order elliptic equation. We show that the problem is ill-posed in the sense of Hadamard, i.e., the solution does not depend continuously on the given data. We propose a regularization method via nonlocal conditions and under some a priori bound assumptions different estimates for the regularized solution are obtained. Numerical examples for a rectangle domain show the effectiveness of the new method in providing highly accurate numerical solutions as the noise level tends to zero.
Rocznik
Tom
Strony
5--17
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Department of Mathematics, University 8 Mai, 1945 Guelma, Algeria
Bibliografia
- [1] Kal’menov, T., & Iskakova, U. (2017). On an ill-posed problem for a biharmonic equation. Filomat, 31, 1051-1056.
- [2] Selvadurai, A.P.S. (2013). Partial Differential Equations in Mechanics 2: The Biharmonic Equations, Poissons Equations. Cham: Springer.
- [3] Gazzola, F. (2013). On the moments of solutions to linear parabolic equations involving the biharmonic operator. Discrete Contin. Dyn. Syst., 33, 3583-3597.
- [4] Berchio, E., Gazzola, F., & Weth, T. (2007). Critical growth biharmonic elliptic problems under Steklov type boundary conditions. Adv. Differential Equations, 12, 381-406.
- [5] Chekurin, F., & Postolaki, L. (2009). A variational method for the solution of biharmonic problems for a rectangular domain. J. Comput. Appl. Math., 160, 386-399.
- [6] Meleshko, V. (2003). Selected topics in the history of the two-dimensional biharmonic problem. Appl. Mech. Rev., 56, 33-85.
- [7] Gazzola, F., Grunau, H.C., & Sweers, G. (2010). Polyharmonic Boundary Value Problems. A Monograph on Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains. Berlin-Heidelberg: Springer-Verlag.
- [8] Lesnic, D., & Zeb, A. (2009). The method of fundamental solution for an inverse internal boundary value problem for the biharmonic equation. Int. J. Comput. Methods, 6, 557-567.
- [9] Sakakibara, K. (2017). Method of fundamental solutions for biharmonic equation based on Almansi-type decomposition. Appl. Math., 62, 297-317.
- [10] Guo, C., Zhilin, L., & Lin, P. (2008). A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible stokes flow. Adv. Comput. Math., 29, 113-133.
- [11] Tajani, C., Kajtih, H., & Daanoun, A. (2017). Iterative method to solve a data completion problem for biharmonic equation for rectangular domain. Analele Universiţǒtii de Vest, Timişoara LV, 129-147.
- [12] Lamichhane, B. (2011). A mixed finite element method for the biharmonic problem using biorthogonal or quasi biorthogonal systems. J. Sci. Comput., 46, 379-396.
- [13] Eymard, R. (2012). Finite volume schemes for the biharmonic problem on general meshes. Math. Comput., 81, 2019-2048.
- [14] Xiangnan, P., Chenb, C.S., & Fangfang, D. (2017). The MFS and MAFS for solving Laplace and biharmonic equations. Eng. Anal. Bound. Elem., 80, 87-93.
- [15] Guminiak, M. (2015). An initial stability of plates in various conservative load conditions by the boundary element method. J. Appl. Math. Comput. Mech., 14(3), 25-36.
- [16] Benrabah, A., & Boussetila, N. (2019). Modified nonlocal boundary value problem method for an ill-posed problem for the biharmonic equation. Inverse Probl. Sci., 27, 340-368.
- [17] Benrabah, A., Boussetila, N., & Rebbani, F. (2020). Modified auxiliary boundary conditions method for an illposed problem for the homogeneous biharmonic equation. Math. Methods Appl. Sci., 43, 358-383.
- [18] Merker, J., & Matas, A. (2022). Estimation of discontinuous parameters in linear elliptic equations by a regularized inverse problem. PADIFF, 5, 100384, DOI: 10.1016/j.padiff.2022.100384.
- [19] Agarwal, P., Merker, J., & Schuldt, G. (2021). Singular integral Neumann boundary conditions for semilinear elliptic PDEs. Axioms 10(2021), 74, DOI:10.3390/axioms10020074.
- [20] Hadamard, J. (1923). Lecture Note on Cauchy’s Problem in Linear Partial Differential Equations. New Haven: Yale University Press.
- [21] Alessandrini, G., Rondi, L., Rosset, E., & Vessella, S. (2009). The stability for the Cauchy problem for elliptic equations. Inverse Problems, 25(12), 47p.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fcc3439a-bfb7-44ed-947b-e4fd334d8fee