PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of geometric characteristics of the buildings facades on the heat transfer to the wind flow

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of a numerical study of heat transfer from the external surfaces of freestanding structures in the surface layer of the atmosphere. Numerical models of structures have the same heat transfer area, but different heights and lengths. Numerical modeling of heat transfer from structures in a wind flow in a three-dimensional formulation made it possible to establish some features of convective heat transfer from enclosing structures, depending on the height of the building and the speed of the wind flow. In particular, it is shown that the dependence of the surface-averaged values of the heat flux density on the height of the building has a local minimum, after which the average heat flux density increases insignificantly with an increase in the height of the building.
Rocznik
Strony
11--22
Opis fizyczny
Bibliogr. 10 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Institute of Engineering Thermophysics National Academy of Sciences of Ukraine
  • Institute of Engineering Thermophysics National Academy of Sciences of Ukraine
  • Kielce University of Technology, Poland
  • Institute of Engineering Thermophysics National Academy of Sciences of Ukraine
  • Institute of Engineering Thermophysics National Academy of Sciences of Ukraine
Bibliografia
  • [1] Clarke J.A., Energy Simulation in Building Design. 2-nd Edition, Butterworth-Heinemann Linacre House, Jordan Hill, Oxford OX2 8DP 2001, 373 p.
  • [2] Mirsadeghi M., Cóstola D., Blocken B., Hensen J.L.M., Review of external convective heat transfer coefficient models in building energy simulation programs: implementation and uncertainty. Applied Thermal Engineering, March 2013.
  • [3] Palyvos J.A., A survey of wind convection coefficient correlations for building envelope energy systems' modeling, Applied Thermal Engineering, 28 (2008), pp. 801-808.
  • [4] Montazeri H., Blocken B., Derome D., Carmeliet J., Hensen J.L.M., CFD analysis of forced convective heat transfer coefficients at windward building facades: Influence of building geometry. J. Wind Eng. Ind. Aerodyn. 146, 2015, pp. 102-116.
  • [5] Iousef S., Montazeri H., Blocken B., van Wesemael P., Impact of exterior convective heat transfer coefficient models on the energy demand prediction of buildings with different geometry. Building Simulation, 2019, 12(5), pp. 797-816. https://doi.org/10.1007/s12273-019-0531-7.
  • [6] Franke J., Hellsten A., Schlünzen H., Carissimo B., Best practice guideline for the CFD simulation of flows in the urban environment, COST Action 732: Quality assurance and improvement of microscale meteorological models, Hamburg 2007.
  • [7] Richards P.J., Hoxey R.P., Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model, J. Wind Eng. Ind. Aerodyn. 46-47 (1993), pp. 145-153.
  • [8] Wieringa J., Updating the Davenport roughness classification, J. Wind Eng. Ind. Aerodyn. 41-44(1992), pp. 357-368.
  • [9] Basok B.I., Chislennoe modelirovanie vetrovih potokov v zone gorodskoi zastroiki. Basok B.I., Davidenko B.V. Novikov V.G., Vіdnovlyuvalna energetika. 2014, No. 2, 37, s. 46-59.
  • [10] Fokin K.F., Stroitelnaja teplotechnika ograzdajushcich castej zdanij. Moscow «АVОK-PRESS» 2006, 252с.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fcbeb6d5-a280-460d-bcec-7c18d957114d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.