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Abstract. The authors study a type of second order nonlinear telegraph equation. The
existence and uniqueness of positive doubly periodic solutions are discussed. The parametric
dependence of the solutions is also investigated. Two examples are given as applications of
the results.
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1. INTRODUCTION

In this paper, we consider the nonlinear telegraph equation

utt − uxx + cut + a(t, x)u = λF (t, x, u), (1.1)

with the doubly periodic conditions

u(t, x) = u(t+ 2π, x) = u(t, x+ 2π), (t, x) ∈ R2, (1.2)

where R+ = [0,∞), c is a positive constant, λ is a positive parameter, a ∈ C(R2,R+)
and F ∈ C(R2×R+,R+) are 2π-periodic in both t and x. Let T2 be the torus defined
by T2 = (R/2πZ) × (R/2πZ). Clearly, any doubly periodic functions defined on R2

can be identified to functions defined on T2. By a positive doubly periodic solution
of Eq. (1.1) we understand a function u ∈ L1(T2) satisfying (1.1) in the distribution
sense, i.e., ∫

T2

u(φtt − φxx − cφt + a(t, x)φ)dtdx =

∫
T2

λF (t, x, u)φdtdx

for any φ ∈ C∞(T2) and u(t, x) > 0 on T2.
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Second order telegraph equations are often used to model the mixture between
diffusion and wave propagation by introducing a term accounting for effects of fi-
nite velocity into standard heat or mass transport equations. These equations have
applications in various areas such as the study of electrical signals, heat transfer,
chemical kinetics, biological population dispersal, and random walks; see, for example,
[1, 5–7,11,15] and the references therein.

The existence of solutions of nonlinear telegraph equations has been considered
by many authors; the reader is referred to [2, 3, 9, 10, 12–15] for some recent results.
Ortega and Robles-Pérez [12] proved the existence of at least one doubly periodic
solution of the equation

utt − uxx + cut = F (t, x, u) (1.3)

by using the upper and lower solution method. This method was also used by Li [9] to
investigate the existence and uniqueness of time-periodic solution of Eq. (1.3). Using
fixed point theory on cones, Li [10] studied the existence of positive doubly periodic
solutions of the special case of Eq. (1.1) with λ = 1 and F (t, x, u) = b(t, x)f(t, x, u).
The multiplicity of positive solutions of Eq. (1.1) was considered by Wang and An[13].
For the Ambrosetti-Prodi-type results on nonlinear telegraph equations or systems,
the reader is referred to [2, 3, 14].

To the best of our knowledge, very little is known on the existence of unique
positive doubly periodic solutions of Eq. (1.1). In this paper, two theorems on the
existence, uniqueness, and the parametric dependence of positive doubly periodic
solutions of Eq. (1.1) are obtained by using mixed monotone operator theory. Our
results reveal the relation between the solution and the parameter, and provide a
method to approximate the unique solutions by the solutions of the associated linear
equations.

This paper is organized as follows: after this introduction, the main results and
examples are presented in Section 2. All the proofs are given in Section 3.

2. MAIN RESULTS

In this paper, we let F (t, x, u) = f(t, x, u, u) + r(t, x, u), where f ∈ C(R2 × R2
+,R+)

and r ∈ C(R2 ×R+,R+) are 2π-periodic in both t and x. The following assumptions
will be needed:

(H1) 0 ≤ a(t, x) ≤ c2/4 on R2 and
∫
T2 a(t, x)dtdx > 0;

(H2) f(t, x, ·, v) is increasing for any fixed (t, x, v) ∈ T2 × R+, and f(t, x,u, ·) is
decreasing for any fixed (t, x,u) ∈ T2 × R+;

(H3) there exists θ ∈ (0, 1) such that

f(t, x, κu, κ−1v) ≥ κθf(t, x,u, v)

for (t, x) ∈ T2, κ ∈ (0, 1), u ∈ R+, and v ∈ R+;
(H4) r(t, x, ·) is increasing for any fixed (t, x) and there exists a constant w > 0 such

that r(t, x, w) 6≡ 0 on T2;
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(H5) r(t, x, κu) ≥ κr(t, x,u) for (t, x) ∈ T2, κ ∈ (0, 1), and u ∈ R+;
(H6) there exists η > 0 such that

f(t, x,u, v) ≥ ηr(t, x,u)

for (t, x) ∈ T2, u ∈ R+, and v ∈ R+;
(H7) for θ given in (H3), we have θ ∈ (0, 1/2) and

r(t, x, κu) ≥ κθr(t, x,u), (t, x) ∈ T2, κ ∈ (0, 1), and u ∈ R+.

Remark 2.1. We would like to make a few comments on the form of the nonlinear
term f above. The analysis in this paper mainly relies on mixed monotone operator
theory. To apply such theory, one alternative way is to write the nonlinearity as
f(t, x,u) and assume that f(t, x,u) can be decomposed as f(t, x,u) = g(t, x,u) +
h(t, x,u), where g : R2 × R+ → R+ is continuous and nondecreasing in the third
argument, h : R2×R+ → R+ is continuous and nonincreasing in the third argument,
and there exists θ ∈ (0, 1) such that

g(t, x, κu) ≥ κθg(t, x,u) (2.1)

and
h(t, x, κ−1u) ≥ κθh(t, x,u) (2.2)

for (t, x) ∈ R2, κ ∈ (0, 1), and u ≥ 0. The reader may refer to [4] for a related
discussion.

Here, the nonlinear term f is written as a function of four arguments. Then, to
apply mixed monotone operator theory, we need to assume that the conditions (H2)
and (H3) above are satisfied. By writing f this way, a larger class of functions can
be covered. For instance, if f(t, x,u, v) = 3

√
u/
√

v + 1, then, f(t, x,u,u) cannot be
decomposed into a summation of two functions g and h satisfying (2.1) and (2.2), but
f(t, x,u, v) does satisfy (H2) and (H3) with θ = 5/6.

For any u ∈ C(T2), let ‖u‖ = max(t,x)∈T2 |u(t, x)|. The following theorem is our
main result.

Theorem 2.2. Assume that (H1)–(H6) hold. Then:

1. for any λ > 0, Eq. (1.1) has a unique positive doubly periodic solution uλ ∈ C(T2);
2. for any functions u0 and v0 ∈ C(T2) with min(t,x)∈T2 u0(t, x) > 0 and

min(t,x)∈T2 v0(t, x) > 0, let {un} and {vn} be the solutions of the linear telegraph
equations

(un)tt − (un)xx + c(un)t+a(t, x)un =

=λ(f(t, x, un−1, vn−1) + r(t, x, un−1)), (2.3)
(vn)tt − (vn)xx + c(vn)t+a(t, x)vn =

=λ(f(t, x, vn−1, un−1) + r(t, x, vn−1)), (2.4)

n = 1, 2, . . . . Then ‖un − uλ‖ → 0 and ‖vn − uλ‖ → 0 as n→∞.
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3. If in addition, (H7) holds, then the unique solution uλ satisfies the following prop-
erties:
(a) uλ(t, x) is strictly increasing in λ, i.e., λ1 > λ2 > 0 implies uλ1(t, x) >

uλ2
(t, x) on R2;

(b) limλ→0+ ‖uλ‖ = 0 and limλ→∞ ‖uλ‖ =∞;
(c) uλ(t, x) is continuous in λ, i.e., ‖uλ − uλ0

‖ → 0 if λ→ λ0 > 0.

When r(t, x,u) ≡ 0 on R2 × R+, i.e., F (t, x,u) = f(t, x,u,u), we obtain a similar
result.

Theorem 2.3. Assume that F (t, x,u) = f(t, x,u,u) with (H1)–(H3) hold. Further-
more, there exists w > 0 such that f(t, x, w,w) 6≡ 0 on T2. Then:

1. For any λ > 0, Eq. (1.1) has a unique positive doubly periodic solution uλ ∈ C(T2).
2. For any functions u0 and v0 ∈ C(T2) with min(t,x)∈T2 u0(t, x) > 0 and

min(t,x)∈T2 v0(t, x) > 0, let {un} and {vn} be the solutions of the linear telegraph
equations

(un)tt − (un)xx + c(un)t + a(t, x)un = λf(t, x, un−1, vn−1),

(vn)tt − (vn)xx + c(vn)t + a(t, x)vn = λf(t, x, vn−1, un−1),

n = 1, 2, . . . . Then ‖un − uλ‖ → 0 and ‖vn − uλ‖ → 0 as n→∞.
3. If in addition, θ ∈ (0, 1/2), then the unique solution uλ satisfies the following

properties:
(a) uλ(t, x) is strictly increasing in λ, i.e., λ1 > λ2 > 0 implies uλ1

(t, x) >
uλ2(t, x) on R2;

(b) limλ→0+ ‖uλ‖ = 0 and limλ→∞ ‖uλ‖ =∞;
(c) uλ(t, x) is continuous in λ, i.e., ‖uλ − uλ0

‖ → 0 if λ→ λ0 > 0.

Remark 2.4. In Theorem 2.2 (2) and Theorem 2.3 (2), if we let u0 = v0, then it
is easy to see that un = vn for any n > 0. Hence, we only need to solve one linear
equation

(un)tt − (un)xx + c(un)t+a(t, x)un = λF (t, x, un−1) (2.5)

in each step. Since Theorem 2.2 (2) and Theorem 2.3 (2) guarantee the convergence
of {un}, we may use this iteration to approximate the unique positive doubly periodic
solution of Eq. (1.1).

To demonstrate the application of our results, let us consider the following exam-
ples.

Example 2.5. Consider the equation

utt − uxx + cut +
c2(cos t+ 1)

8
u = λ

(
uθ + arctan(u) +m

)
. (2.6)

We claim that Eq. (2.6) has a unique positive doubly periodic solution for any c > 0,
λ > 0, m > 0, and θ ∈ (0, 1). In fact, let

f(t, x,u, v) = uθ +m and r(t, x,u) = arctan(u) = r(u).
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It is easy to verify that (H1)–(H4) and (H6) hold with η = 2m/π. For κ ∈ (0, 1) and
u ∈ R+, it is easy to see that

[r(κu)− κr(u)]′ =
κ

1 + κ2u2
− κ

1 + u2
≥ 0.

Hence, r(κu) ≥ κr(u) for κ ∈ (0, 1) and u ∈ R+, i.e., (H5) holds. Thus, by Theo-
rem 2.2 (1), Eq.(2.6) has a unique positive doubly periodic solution uλ. Note that for
κ ∈ (0, 1) and θ ∈ (0, 1), [r(κu)− κθr(u)]′

∣∣
u=0

= κ−κθ < 0. Hence, uθ+arctan(u)+m
does not satisfies (H3), i.e., we cannot use this function as the function f needed in
our theorems.

The numerical solution of Eq. (2.6) with c = 7, λ = 2, θ = 1/2, and m = 11 is
computed by using (2.5) with u0 ≡ 1. The maximum absolute errors En = ‖un−un−1‖
between un and un−1 for the first 10 iterations are given in Table 1, which confirm
our results. The graph of u10 is given in Figure 1.

Table 1. The maximum absolute error for Eq. (2.6)

n 1 2 3 4 5
En 8.4149 1.4462 0.1082 0.0082 7.1787e-04
i 6 7 8 9 10
En 6.8257e-05 6.5136e-06 5.9842e-07 5.2871e-08 4.5926e-09
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Fig. 1. Numerical solution of Eq. (2.6) after 10 iterations
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Example 2.6. Assume θ1, θ2 ∈ (0, 1), and c, λ, and m are positive constants. Then
the equation

utt − uxx + cut +
c2 sin2(t+ x)

4
u = λ

(
cos2 t cos2 x+ uθ1 +

1

(u+m)θ2

)
(2.7)

has a unique positive doubly periodic solution for any positive constants c and λ. To
see this, let

f(t, x,u, v) = cos2 t cos2 x+ uθ1 +
1

(v +m)θ2
.

Clearly (H1)–(H3) hold when θ = max{θ1, θ2} and f(t, x, w,w) > 0 on T2 for any
positive w. Hence, by Theorem 2.3 (1), Eq.(2.7) has a unique positive doubly periodic
solution uλ.

If we further assume θ1, θ2 ∈ (0, 1/2), by Theorem 2.3 (3), uλ is continuous and
strictly increasing in λ.

With c = 10, λ = 5, m = 1, θ1 = 0.3, θ2 = 0.4, Eq. (2.7) is solved using (2.5) with
u0 ≡ 1. The maximum absolute errors En = ‖un − un−1‖ between un and un−1 for
the first 10 iterations are given in Table 2. The graph of u10 is given in Figure 2.

Table 2. The maximum absolute error for Eq. (2.7)

n 1 2 3 4 5
En 0.7757 0.0310 0.0032 2.3716e-04 1.5449e-05
i 6 7 8 9 10
En 1.0135e-06 7.1725e-08 5.3201e-09 3.9626e-10 2.9179e-11
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Fig. 2. Numerical solution of Eq. (2.7) after 10 iterations
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3. PROOFS

We first consider the linear telegraph equation

utt − uxx + cut + a(t, x)u = h(t, x), (3.1)

with condition (1.2).
The following lemma is extracted from Li [10, Lemma 2].

Lemma 3.1. Assume that (H1) holds and h ∈ L1(T2). Then Eq. (3.1) has a unique
solution u = Th, where T : L1(T2) → C(T2) is a bounded linear operator with the
following properties:

(a) T : C(T2)→ C(T2) is a completely continuous operator;
(b) if h(t, x) ≥ 0 a.e. in T2, then for any (t, x) ∈ T2,

‖h‖1
(e3cπ − e2cπ)2

≤ (Th)(t, x) ≤ (1 + ecπ)‖h‖1
2ecπ‖a‖1

. (3.2)

Remark 3.2. Lemma 3.1 (b) implies that for any h1, h2 ∈ L1(T2) with h1(t, x) ≤
h2(t, x) a.e. on T2,

(Th1)(t, x) ≤ (Th2)(t, x) for any (t, x) ∈ T2.

The reader is referred to [10,12] for more properties of T .

We will use mixed monotone operator theory to prove Theorem 2.2. The following
definitions and lemma are needed. The reader is referred to [8] for additional details.

Definition 3.3. Let (X, ‖ · ‖) be a Banach space and 0 be the zero element of X.

(a) A nonempty closed convex set P ⊂ X is said to be a cone if it satisfies (i) u ∈ P
and λ > 0 =⇒ λu ∈ P ; (ii) u ∈ P and −u ∈ P =⇒ u = 0.

(b) A cone P is said to be normal if there exists a constant D > 0 such that, for all
u, v ∈ X, 0 ≤ u ≤ v =⇒ ‖u‖ ≤ D‖v‖. The constant D is called the normality
constant of P .

(c) The Banach space (X, ‖ · ‖) is partially ordered by a normal cone P ⊂ E, i.e.,
u ≤ v if v − u ∈ P . If u ≤ v and u 6= v, then we write u < v or v > u.

(d) For any u, v ∈ X, we use the notation u ∼ v to mean that there exist d > 0 and
d > 0 such that dv ≤ u ≤ dv. Given w > 0, i.e., w ≥ 0 and w 6= 0, we define
Pw = {u ∈ X | u ∼ w}. Clearly, Pw ⊂ P .

Definition 3.4. An operator A : Pw × Pw → X is said to be mixed monotone if
A(u, v) is nondecreasing in u and nonincreasing in v, i.e., for u1, u2, v1, v2 ∈ Pw, we
have

u1 ≤ u2, v1 ≥ v2 =⇒ A(u1, v1) ≤ A(u2, v2);

Moreover, an element u ∈ Pw is said to be a fixed point of A if A(u, u) = u.
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Definition 3.5. Assume B : Pw → X.

(a) B is said to be sub-homogeneous if it satisfies

B(κu) ≥ κB(u) for all u ∈ Pw and κ ∈ (0, 1);

(b) let θ ∈ [0, 1), B is said to be θ-concave if it satisfies

B(κu) ≥ κθBu for all u ∈ Pw and κ ∈ (0, 1).

Lemma 3.6 ([8, Lemma 2.1]). Let θ ∈ (0, 1) and A : Pw × Pw → X be a mixed
monotone operator satisfying

A(κu, κ−1v) ≥ κθA(u, v) for all u, v ∈ Pw and κ ∈ (0, 1).

(A) Assume that B : Pw → X is an increasing sub-homogeneous operator and the
following conditions hold:

(i) A(w,w) ∈ Pw and B(w) ∈ Pw;
(ii) there exists a constant η > 0 such that A(u, v) ≥ ηB(u) for all u, v ∈ Pw.

Then, we have:

1. for any λ > 0, the equation λ(A(u, u) +B(u)) = u has a unique solution uλ in Pw;
2. for any initial values u0, v0 ∈ Pw, the sequences {un} and {vn} defined by

un = λ(A(un−1, vn−1) + B(un−1)),

vn = λ(A(vn−1, un−1) + B(vn−1)),
n = 1, 2, . . . ,

satisfy ‖un − uλ‖ → 0 and ‖vn − uλ‖ → 0 as n→∞;
3. if we further assume that θ ∈ (0, 1/2) and B is θ-concave, then the unique solution
uλ satisfies the following properties:
(a) uλ is strictly increasing in λ, i.e., uλ1

> uλ2
if λ1 > λ2 > 0;

(b) limλ→0+ ‖uλ‖ = 0 and limλ→∞ ‖uλ‖ =∞;
(c) uλ is continuous in λ, i.e., ‖uλ − uλ0‖ → 0 when λ→ λ0 > 0.

(B) Assume A(w,w) ∈ Pw. Then:

1. for any λ > 0, the equation λA(u, u) = u has a unique solution uλ in Pw;
2. for any initial values u0, v0 ∈ Pw, the sequences {un} and {vn} defined by

un = λA(un−1, vn−1), vn = λA(vn−1, un−1), n = 1, 2, . . . ,

satisfy ‖un − uλ‖ → 0 and ‖vn − uλ‖ → 0 as n→∞;
3. if we further assume that θ ∈ (0, 1/2), then the unique solution uλ satisfies all the

properties in (3) of Part (A).

In the sequel, we let X = C(T2) with the standard maximum norm ‖ · ‖ and

P = {u ∈ X | u(t, x) ≥ 0 on T2}.
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Clearly, P is a normal cone with normality constant D = 1. For w given in (H4), it is
easy to see that

Pw = {u ∈ P | min
(t,x)∈T2

u(t, x) > 0}

since for any u ∈ Pw, 0 < min(t,x)∈T2 u(t, x) ≤ u(t, x) ≤ ‖u‖ on T2. We define
A : Pw × Pw → X and B : Pw → X by

A(u, v)(t, x) = (Tf [u, v])(t, x) (3.3)

and
B(u)(t, x) = (Tr[u])(t, x), (3.4)

where f [u, v](t, x) = f(t, x, u(t, x), v(t, x)), r[u](t, x) = r(t, x, u(t, x)), and T is defined
in Lemma 3.1.

Remark 3.7. It is easy to verify that u is a solution of Eq. (1.1) if and only if u is a
solution of the equation λ(A(u, u) +B(u)) = u.

Proof of Theorem 2.2. (1). By (H2), (H4), and Remark 3.2, A is mixed monotone and
B is increasing. For u, v ∈ Pw and κ ∈ (0, 1), (H3) implies that for any (t, x) ∈ T2 and
κ ∈ (0, 1), f [κu, κ−1v](t, x) ≥ κθf [u, v](t, x). Then by (3.3) and Remark 3.2,

A(κu, κ−1v)(t, x) = Tf [κu, κ−1v](t, x) ≥ κθTf [u, v](t, x) = κθA(u, v)(t, x).

Similarly, by (H5) and (3.4), for any (t, x) ∈ T2 and κ ∈ (0, 1),

B(κu)(t, x) = Tr[κu](t, x) ≥ κTr[u](t, x) = κB(u)(t, x),

i.e., B is sub-homogeneous. By (H6), (3.3), and (3.4), for any u, v ∈ Pw,

A(u, v)(t, x) = Tf [u, v](t, x) ≥ ηTr[u](t, x) = ηB(u)(t, x).

In particular, we have

A(w,w)(t, x) = Tf [w,w](t, x) ≥ ηTr[w](t, x) = ηB(w)(t, x).

By (H4), (3.2), and (3.4), for any (t, x) ∈ T2,

B(w)(t, x) = Tr[w](t, x) ≥ ‖r[w]‖1
(e3cπ − e2cπ)2

> 0.

Hence, both A(w,w) and B(w) ∈ Pw.
Therefore, by Lemma 3.6 (A) (1), for any λ > 0, Eq. (1.1) has a unique solution

uλ ∈ Pw.
By the definition of X and Pw, it is easy to see that if û ∈ X is a positive solution

of Eq. (1.1), then û ∈ Pw. Thus, uλ is the unique positive doubly periodic solution of
Eq. (1.1).

(2). By Lemma 3.1, for n = 1, 2, . . . , un = T (λ(f [un−1, vn−1] + r[un−1])) is the
solution of Eq. (2.3). Then by (3.3) and (3.4),

un = λT (f [un−1, vn−1] + r[un−1]) = λ(A(un−1, vn−1) + B(un−1)).
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Similarly, we can show that for n = 1, 2, . . . , vn = λ(A(vn−1, un−1) + B(vn−1)) is the
solution of Eq. (2.4). The the conclusion follows from Lemma 3.6 (A) (2).

(3). If (H7) holds, then θ ∈ (0, 1/2) and

B(κu)(t, x) = Tr[κu](t, x) ≥ κθTr[u](t, x) = κθB(u)(t, x),

i.e., B is θ-concave. Then Theorem 2.2 (3) follows from Lemma 3.6 (A) (3). �

The proof of Theorem 2.3 proceeds in the same way by using Lemma 3.6 (B); we
omit the details.
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