PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A CROW/MZI-based switch for silicon photonics applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the authors propose the design of an electro-optical silicon-photonics hitless switch that follows wavelength-division multiplexing (WDM) conditions in terms of channel bandwidth, shape factor, and free spectral range. Through a careful step-by-step design, the authors study a switch device composed of a coupled-resonator optical waveguide (CROW) structure merged with a Mach-Zehnder interferometer (MZI) modulator. The MZI modulator controls the coupling to the CROW and hence turns the switch on and off. The traditional matrix analysis of the CROW structure is modified to accommodate the MZI modulator section. The proposed switch requires a chip area of less than 0.01225 mm². The switch transmission satisfies WDM requirements with a channel-free spectral range of 100 GHz, channel flat-top response with a passband for the through/drop ports of 64.6 GHz/33 GHz, and a shape factor of 0.76/0.6. Besides, the switch transmission features an insertion loss for the through/drop ports of 0.23/1 dB, a switching speed of 100 GHz, and a competitive switch-on/off ratio of 33 dB.
Rocznik
Strony
art. no. e153810
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
  • Department of Electronics, Nuclear Materials Authority, 4710030 Cairo, Egypt
autor
  • Engineering Physics and Mathematics Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt
Bibliografia
  • [1] Gad, M. & Elkattan, M. Tailoring the optical properties of polyvinyl alcohol-polyvinyl pyrrolidone based polymers. Opt. Quantum Electron. 55, 985 (2023). https://doi.org/10.1007/s11082-023-05233-6.
  • [2] Elkattan, M. & Gad, M. Tuning the optical constants of PVA based films for optoelectronic applications. Opt. Commun. 527, 128979 (2023). https://doi.org/10.1016/J.OPTCOM.2022.128979.
  • [3] Elkattan, M. & Gad, M. Investigation of the absorption edge and the optical bandgap of PVA/PVP-based thin films. J. Electron. Mater. 54, 831-847 (2024). https://doi.org/10.1007/s11664-024-11536-5.
  • [4] Mahrous, H. et al. A multi-objective genetic algorithm approach for silicon photonics design. Photonics 11, 80 (2024). https://doi.org/10.3390/photonics11010080.
  • [5] Mahrous, H., Fedawy, M., Abboud, M., Selim, D. & Gad, M. Optimizing the Design of a Silicon-Photonics Interleaver Circuit. in 2022 39th National Radio Science Conference (NRSC) 293-300 (IEEE, 2022). https://doi.org/10.1109/NRSC57219.2022.9971168.
  • [6] Shalaby, R. A. et al. Silicon Photonic Coupled-Ring Resonator in Nested Configuration Comprising Different Length Scales. in 14th International Conference on Computer Engineering and Systems (ICCES) 432-437 (IEEE, 2020). https://doi.org/10.1109/icces48960.2019.9068163.
  • [7] Shalaby, R. A. et al. Silicon photonics dual-coupler nested coupled cavities. Proc. SPIE 10923, 109231P (2019). https://doi.org/10.1117/12.2509661.
  • [8] Elkattan, M. & Gad, M. A high-speed silicon-photonics WDM switch for optical networks applications. Photonics 11, 1115 (2024). https://doi.org/10.3390/photonics11121115.
  • [9] Labib, M., Gad, M., Sabry, Y. M. & Khalil, D. Optimization of silicon on silica waveguides for mid-infrared applications at 4.28 um. Proc. SPIE 10923, 109231H (2019). https://doi.org/10.1117/12.2508079.
  • [10] Labib, M., Gad, M., Sabry, Y. M. & Khalil, D. Strip Waveguide Enabling Low Loss for Silicon on Silica Technology in the MIR. in 13th International Conference on Computer Engineering and Systems (ICCES) 536-540 (IEEE, 2018). https://doi.org/10.1109/ICCES.2018.8639316.
  • [11] Monir, M., El-Refaei, H. & Khalil, D. Single-mode refractive index reconstruction using an NM-line technique. Fiber Integr. Opt. 25, 69-74 (2006). https://doi.org/10.1080/01468030500466230.
  • [12] Monir, M., El-Refaei, H., Khalil, D. & Omar, O. A. Assessment of the NM-lines sensitivity for measurement errors. Fiber Integr. Opt. 26, 1-15 (2007). https://doi.org/10.1080/01468030601000250.
  • [13] Gad, M., El-Refaei, H., Khalil, D. & Omar, O. A. Comparison of the N times mode-lines technique to the inverse technique in refractive index profile reconstruction. Opt. Eng. 46, 094601 (2007). https://doi.org/10.1117/1.2785177.
  • [14] Hu, Y., Liang, D. & Beausoleil, R. G. An advanced III-V-on-silicon photonic integration platform. Opto-Electron. Adv. 4, 2000094 (2021). https://doi.org/10.29026/oea.2021.200094.
  • [15] Ferraro, F. J. et al. Imec silicon photonics platforms: Performance, overview and roadmap. Proc. SPIE 12429, 1242909 (2023). https://doi.org/10.1117/12.2650579.
  • [16] Mahrous, H., Fedawy, M., El Sabbagh, M., Fikry, W. & Gad, M. Design of a 90 GHz SOI fin electro-optic modulator for high-speed applications. Appl. Sci. 9, 4917 (2019). https://doi.org/10.3390/app9224917.
  • [17] Bogaerts, W. et al. Silicon microring resonators. Laser Photonics Rev. 6, 47-73 (2012). https://doi.org/10.1002/lpor.201100017
  • [18] Gad, M., Yevick, D. & Jessop, P. A comparison of modeling methods for ring resonator circuits. J. Opt. Soc. Am. A 27, 703-708 (2010). https://doi.org/10.1364/josaa.27.000703.
  • [19] Gad, M., Yevick, D. & Jessop, P. Compound ring resonator circuit for integrated optics applications, J. Opt. Soc. Am. A 26, 2023-2032 (2009). https://doi.org/10.1364/josaa.26.002023.
  • [20] Gad, M., Ackert, J., Yevick, D., Chrostowski, L. & Jessop, P. Ring resonator wavelength division multiplexing interleaver. J. Light. Technol. 29, 2102-2109 (2011). https://doi.org/10.1109/JLT.2011.2157081.
  • [21] Gad, M., Yevick, D. & Jessop, P. High sensitivity ring resonator gyroscopes. Fiber Integr. Opt. 30, 395-410 (2011). https://doi.org/10.1080/01468030.2011.611581.
  • [22] Gad, M., Zaki, A. & Sabry, Y. M. Silicon Photonic Mid-Infrared Grating Coupler Based on Silicon-on-Insulator Technology. in 2017 34th National Radio Science Conference (NRSC) 400-406 (IEEE, 2017). https://doi.org/10.1109/NRSC.2017.7893509.
  • [23] Xie, Y. et al. Towards large-scale programmable silicon photonic chip for signal processing. Nanophotonics 13, 2051-2073 (2024). https://doi.org/10.1515/nanoph-2023-0836.
  • [24] Yue, W., Cai, Y. & Yu, M. Review of 2 × 2 silicon photonic switches. Photonics 10, 564 (2023). https://doi.org/10.3390/photonics10050564.
  • [25] Yariv, A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photonics Technol. Lett. 14, 483-485 (2002). https://doi.org/doi:10.1109/68.992585.
  • [26] Li, G.et al. Ring resonator modulators in silicon for interchip photonic links. IEEE J. Sel. Top. Quantum Electron. 19, 95-113 (2013). https://doi.org/10.1109/JSTQE.2013.2278885.
  • [27] Lira, H. L. R., Manipatruni, S. & Lipson, M. Broadband Hitless Silicon Electro-Optic Switch for Optical Networkson-Chip. in 2009 6th IEEE International Conference on Group IV Photonics 253-255 (IEEE, 2009). https://doi.org/10.1109/GROUP4.2009.5338366.
  • [28] Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photonics 4, 518-526 (2010). https://doi.org/10.1038/nphoton.2010.179.
  • [29] Cocorullo, G., Iodice, M., Rendina, I. & Sarro, P. M. Silicon thermooptical micromodulator with 700-kHz-3-dB bandwidth. IEEE Photonics Technol. Lett. 7, 363-365 (1995). https://doi.org/10.1109/68.376803.
  • [30] Gardes, F. Y., Reed, G. T., Emerson, N. G. & Png, C. E. A sub-micron depletion-type photonic modulator in silicon on insulator. Opt. Express. 13, 8845-8854 (2005). https://doi.org/10.1364/opex.13.008845.
  • [31] Krishnanunni, R. A. & Ravindran, S. Investigating the performance of a novel silicon based p-i-n modulator with enhanced carrier injection. Opt. Quantum Electron. 56, 1359 (2024). https://doi.org/10.1007/s11082-024-07284-9.
  • [32] Mahrous, H. et al. Design of compact, high-speed and low-loss silicon-on-silica electro-optic modulators. Semicond. Sci. Technol. 35, 095017 (2020). https://doi.org/10.1088/1361-6641/ab9d09.
  • [33] Mahrous, H., Fedawy, M., El Sabbagh, M., Fikry, W. & Gad, M. A compact 120 GHz monolithic silicon-on-silica electro-optic modulator. Opt. Quantum Electron. 52 1-11 (2020). https://doi.org/10.1007/s11082-020-2239-4.
  • [34] Mahrous, H., Fedawy, M., El Sabbagh, M., Fikry, W. & Gad, M. 130 Gbps low-loss electro-optic modulator based on metal-oxide-semiconductor technology. Optik (Stuttg) 217, 164928 (2020). https://doi.org/10.1016/J.IJLEO.2020.164928.
  • [35] Mahrous, H., Fedawy, M., Abboud, M., Selim, D. & Gad, M. Optimizing the Design of a Silicon-Photonics Interleaver Circuit. in 2022 39th National Radio Science Conference (NRSC) 293-300 (IEEE, 2022).
  • [36] Mahrous, H., Gad, M., El Sabbagh, M., Fedawy, M. & Fikry, W. A High-Speed Electro-Optic Modulator with Optimized Electrode Positions. in 2018 13th International Conference on Computer Engineering and Systems (ICCES) 530-535 (IEEE, 2018). https://doi.org/10.1109/ICCES.2018.8639436.
  • [37] Rabiei, P., Steier, W. H., Zhang, C. & Dalton, L. R. Polymer micro-ring filters and modulators. J. Light. Technol. 20, 1968-1975 (2002). https://doi.org/10.1109/JLT.2002.803058.
  • [38] Gad, M., Yevick, D. & Jessop, P. E. Tunable polymer/silicon over insulator ring resonators. Opt. Eng. 47, 124601 (2008). https://doi.org/10.1117/1.3050355.
  • [39] Kaalund, C. J. & Peng, G.-D. Pole-zero diagram approach to the design of ring resonator-based filters for photonic applications. J. Light. Technol. 22, 1548-1559 (2004). https://doi.org/10.1109/JLT.2004.824526.
  • [40] Gad, M., Yevick, D. & Jessop, P. E. High-speed polymer/silicon on insulator ring resonator switch. Opt. Eng. 47, 094601 (2008). https://doi.org/10.1117/1.2978947.
  • [41] Green, W. M. J., Lee, R. K., DeRose, G. A., Scherer, A. & Yariv, A. Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control. Opt. Express 13, 1651 (2005). https://doi.org/10.1364/opex.13.001651.
  • [42] Cho, S.-Y. & Soref, R. Interferometric microring-resonant 2 × 2 optical switches. Opt. Express 16, 13304–13314 (2008). https://doi.org/10.1016/B978-0-12-803581-8.09769-1.
  • [43] Watts, M. R., Trotter, D. C. &. Young, R. W. Maximally Confined High-Speed Second-Order Silicon Microdisk Switches. in National Fiber Optic Engineers Conference 2008 PDP14 (Optical Publishing Froup, 2008).
  • [44] Goebuchi, Y., Hisada, M., Kato, T. & Kokubun, Y. Optical cross-connect circuit using hitless wavelength selective switch. Opt. Express 16, 535 (2008). https://doi.org/10.1364/oe.16.000535.
  • [45] Sherwood-Droz, N. et al. Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC): erratum. Opt. Express 16, 19395 (2008). https://doi.org/10.1364/oe.16.019395.
  • [46] Vlasov, Y., Green, W. M. J. & Xia, F. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat. Photonics 2, 242-246 (2008). https://doi.org/10.1038/nphoton.2008.31.
  • [47] Luo, X. et al. Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects. IEEE Photonics Technol. Lett. 24, 821-823 (2012). https://doi.org/10.1109/LPT.2012.2188829.
  • [48] Chen, W. et al. Flexible-grid wavelength-selective switch based on silicon microring resonators with interferometric couplers. J. Light. Technol. 36, 3344-3353 (2018). https://doi.org/10.1109/JLT.2018.2839665.
  • [49] Konoike, R., Suzuki, K., Ikeda, K. & Paper, T. Path-independent insertion loss 8 × 8 silicon photonics switch with nanosecond-order switching time. J. Light. Technol. 41, 865-870 (2023). https://doi.org/10.1364/JLT.41.000865.
  • [50] Lu, L. et al. Silicon non-blocking 4 × 4 optical switch chip integrated with both thermal and electro-optic tuners. IEEE Photonics J. 11, 1-9 (2019). https://doi.org/10.1109/JPHOT.2019.2941960.
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. Research concept and design, M.G.; collection of data, M.E.; assembly of data, M.G.; data analysis and interpretation, M.E.; writing the article, M.E. and M.G.; critical revision of the article, M.E.; final approval of article, M.G. and M.E.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fcb9f8d4-c0a9-45ac-9203-f0f3589653f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.