PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of nanocontacts on transient states in electrical circuits

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wpływ nanozłączy na stany nieustalone w obwodach elektrycznych
Języki publikacji
EN
Abstrakty
EN
This paper proposes a model of mechanical switch with stretched nanocontacts based on an analysis of the mechanisms of electron transport within a nanocontact. We use the model proposed to derive equations describing the current in a circuit with an opening switch. The measurement data and the calculation results confirm that nanocontacts substantially modify transient states in the studied circuit and therefore their effect must be taken into account in theoretical analysis.
PL
W artykule na podstawie analizy mechanizmów transportu elektronów w obrębie nanozłączy zaproponowano model łącznika mechanicznego z rozciąganymi nanozłączami. Na podstawie modelu wyprowadzono wzory opisujące prąd płynący w obwodzie elektrycznym podczas otwierania łącznika. Wyniki pomiarów i obliczeń potwierdziły, że nanozłącza w sposób znaczny modyfikują stany nieustalone prądu w badanym obwodzie, co potwierdza konieczność uwzględnienia tego efektu w analizie teoretycznej.
Rocznik
Strony
110--1116
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Poznań University of Technology, Faculty of Electronics and Telecommunications, Piotrowo 3A, 60-965 Poznań
Bibliografia
  • [1] Agraït N., Yeyati A. L., Van Ruitenbeek J. M., Quantum properties of atomic-sized conductors, Physics Reports, 377 (2003), 81-279.
  • [2] Terabe K., Hasegawa T., Nakayama T., Aono M., Quantized conductance atomic switch, Nature, 433 (2005), 47-50.
  • [3] Xie F., Maul R., Obermair C., Wenzel W., Schön G., Schimmel T., Multilevel atomic-scale transistors based on metallic quantum point contacts, Advanced Materials, 22 (2010), 2033-2036.
  • [4] Rajagopalan V., Boussaad S., Tao N. J., Detection of heavy metal ions based on quantum point contacts, Nano Letters, 3 (2003), 851-855.
  • [5] Song J., Aizin G., Kawano Y., Ishibashi K., Aoki N., Ochiai Y., Reno J. L., Bird J. P., Evaluating the performance of quantum point contacts as nanoscale terahertz sensors, Optics Express, 18 (2010), 4609-4614.
  • [6] Cleland A. N., Aldridge J. S., Driscoll D. C., Gossard A. C., Nanomechanical displacement sensing using a quantum point contact, Appl. Phys. Lett., 81 (2002), 1699-1701.
  • [7] Hansen K., Lægsgaard E., Stensgaard I., Besenbacher F., Quantized conductance in relays, Phys. Rev. B, 56 (1997), 2208-2220.
  • [8] Yasuda H., Sakai A., Conductance of atomic-scale gold contacts under high-bias voltages, Phys. Rev. B, 56 (1997), 1069-1071.
  • [9] Poulain C., Jourdan G., Peschot A., Mandrillon V. Contact conductance quantization in a MEMS switch, In 2010 Proceedings of the 56th IEEE Holm Conference on Electrical Contacts, (2010).
  • [10] Van Caekenberghe K., RF MEMS on the radar. IEEE Microwave Magazine, 10 (2009), 99-116.
  • [11] Rebeiz G. M., Muldavin J. B., RF MEMS Switches and Switch Circuits, IEEE Microwave Magazine, 2 (2006), 59-71.
  • [12] Brown C., Rezvanian O., Zikry M. A., Krim J., Temperature dependence of asperity contact and contact resistance in gold RF MEMS switches, Journal of Micromechanics and Microengineering, 19 (2009), 025006.
  • [13] Jensen B. D., Huang K., Chow L. L. W., Kurabayashi K., Adhesion effects on contact opening dynamics in micromachined switches, Journal of Applied Physics, 97 (2005), 103535.
  • [14] Gregori G., Clarke D. R., The interrelation between adhesion, contact creep, and roughness on the life of gold contacts in radiofrequency microswitches, Journal of Applied Physics, 100 (2006), 094904.
  • [15] Patton S. T., Zabinski J. S., Fundamental studies of Au contacts in MEMS RF switches, Tribology Letters, 18 (2005), 215-230.
  • [16] Yang Z., Lichtenwalner D. J., Morris A. S., Krim, J., Kingon A. I., Comparison of Au and Au–Ni alloys as contact materials for MEMS switches, Journal of Microelectromechanical Systems, 18 (2009), 287-295.
  • [17] Nawrocki W., Wawrzyniak M., Pajakowski J., Transient states in electrical circuits with a nanowire, Journal of Nanoscience and Nanotechnology, 9 (2009), 1350-1353.
  • [18] Toler B. F., Coutu Jr R. A., McBride J. W., A review of microcontact physics for microelectromechanical systems (MEMS) metal contact switches, Journal of Micromechanics and Microengineering, 23 (2013), 103001.
  • [19] Pal J., Zhu Y., Dao D., Lu J., Khan, F., Study on contact resistance in single-contact and multi-contact MEMS switches. Microelectronic Engineering, 135 (2015), 13-16.
  • [20] Rezvanian O., Zikry M. A., Brown C., Krim, J., Surface roughness, asperity contact and gold RF MEMS switch behavior. Journal of Micromechanics and Microengineering, 17 (2007), 2006-2015.
  • [21] Wawrzyniak M., Probe capacitance-dependent systematic error in IV measurements of nanowires: analysis and correction, Metrology and Measurement Systems, 14 (2007), 391-408.
  • [22] Dickrell D. J., Dugger M. T., Electrical contact resistance degradation of a hot-switched simulated metal MEMS contact, IEEE Transactions on Components and Packaging Technologies, 30 (2007), 75-80.
  • [23] Untiedt C., Rubio G., Vieira S., Agraït N., Fabrication and characterization of metallic nanowires, Physical Review B, 56 (1997), 2154-2160.
  • [24] Torres J. A., Sáenz J. J., Conductance and mechanical properties of atomic-size metallic contacts: a simple model. Physical Review Letters, 77 (1996), 2245-2248.
  • [25] Garcia-Martin A., Torres J. A., Sáenz J. J., Finite size corrections to the conductance of ballistic wires, Physical Review B, 54 (1997), 13448-13451.
  • [26] Erts, D., Olin, H., Ryen, L., Olsson, E., Thölén, A., Maxwell and Sharvin conductance in gold point contacts investigated using TEM-STM, Physical Review B, 61 (2000), 12725-12727.
  • [27] Wexler G., The size effect and the non-local Boltzmann transport equation in orifice and disk geometry, Proceedings of the Physical Society, 89 (1966), 927-941.
  • [28] Mikrajuddin A., Shi F. G., Kim H. K., Okuyama K., Sizedependent electrical constriction resistance for contacts of arbitrary size: from Sharvin to Holm limits, Materials Science in Semiconductor Processing, 2 (1999), 321-327.
  • [29] Coutu R. A., Kladitis P. E., Cortez R., Strawser R. E., Crane R. L., Micro-switches with sputtered Au, AuPd, Au-on-AuPt, and AuPtCu alloy electric contacts, IEEE Trans. Comp. Pack. Tech., 29 (2006), 341-349.
  • [30] Majumder S., McGruer N. E., Adams G. G., Zavracky P. M., Morrison R. H., Krim, J., Study of contacts in an electrostatically actuated microswitch, Sensors and Actuators A: Physical, 93 (2001), 19-26.
  • [31] Broue A., Fourcade T., Dhennin J., Courtade F., Charvet P. L., Pons P., Plana R., Validation of bending tests by nanoindentation for micro-contact analysis of MEMS switches, Journal of Micromechanics and Microengineering, 20 (2010), 085025.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fcb54482-dfde-4f44-9a42-0e94176daa44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.