PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Creation of More Efficient Work Environment through the New Design of the Automatic Robotic Assembly Station

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the design of an automatic robotic assembly station with the aim of creating a new and more efficient working environment in the production process on the assembly line and thus contributing to meeting customer requirements. The paper presents theoretical knowledge on innovations and on the innovation process. The introduction of an automated workplace will lead to a higher production line than it follows from evaluation of data collected over time. The result of the work is a proposal to create a new and more efficient work environment
Twórcy
  • Faculty of Commerce, University of Economics in Bratislava, Dolnozemská cesta 1, 852 35 Petržalka, Slovakia
  • Faculty of Mechanical Engineering, Technical University of Košice, Letná 1/9, 040 01 Košice, Slovakia
autor
  • Faculty of Mechanical Engineering, Technical University of Košice, Letná 1/9, 040 01 Košice, Slovakia
  • Faculty of Commerce, University of Economics in Bratislava, Dolnozemská cesta 1, 852 35 Petržalka, Slovakia
  • Faculty of Commerce, University of Economics in Bratislava, Dolnozemská cesta 1, 852 35 Petržalka, Slovakia
Bibliografia
  • 1. Cohen Y., Faccio M., Galizia F. G., Mora C., Pilati F. Assembly system configuration through Industry 4.0 principles: the expected change in the actual paradigms. IFAC-PapersOnLine. 2017; 50(1): 14958–14963.
  • 2. Daneshjo N., Malega P., Hlubeňová J., Štuller P. Implementation of Simulation in the Design of Robotic Production Systems. TEM Journal. 2022; 11(1): 179–188.
  • 3. Daneshjo N. Computers Modeling and Simulation. Advanced Materials Research. 2012; 463: 1102–1105.
  • 4. Fabian M., Puškár M., Kopas M., Kuľka J., Boslai R., Gurbaľ L.,Masaryk M., Sloboda O., Blišťan P. Principles of car body digitisation based on geometry extracted from views in 2D drawing documentation. International Journal of Vehicle Design. 2017; 74(1): 62–79.
  • 5. Gopinath V., Ore F., Grahn S., Johansen K. Safetyfocussed design of collaborative assembly station with large industrial robots. Procedia manufacturing. 2018; 25: 503–510.
  • 6. Hagemann S., Stark R. An optimal algorithm for the robotic assembly system design problem: An industrial case study. CIRP Journal of Manufacturing Science and Technology. 2020; 31: 500–513.
  • 7. Holubek R., Ružarovský R., Velíšek K. New Approach in Design of Automated Assembly Station for Disassembly Process. Applied Mechanics and Materials. 2013; 421: 595–600.
  • 8. Daneshjo N. Methodological Procedures Applied to the Manufacturing Systems Design. Advances in Science and Technology: Research Journal. 2020; 14(4): 86–95.
  • 9. Kováč J., Rudy V., Kováč Ju. Production automation. SjF TUKE; 2016.
  • 10. Malega P., Daneshjo N. Production line automation project based of FMEA method. Modern Machinery Science Journal. 2020; 15(2): 3912–3917.
  • 11. Mareš A., Kender J. Ergonomics analysis application for emergency vehicle design. Transfer innovation. 2015; 17(32): 267–269.
  • 12. Michalos G., Kaltsoukalas K., Aivaliotis P., Sipsas P., Sardelis A., Chryssolouris G. Design and simulation of assembly systems with mobile robots. CIRP Annals. 2014; 63(1): 181–184.
  • 13. Padayachee J., Bright G. The design of recon figurable assembly stations for high variety and mass customisation manufacturing. South African Journal of Industrial Engineering. 2013; 24(3): 43–57.
  • 14. Rabenorosoa K., Clévy C., Lutz P., Bargiel S., Gorecki C. A micro-assembly station used for 3d reconfigurable hybrid moems assembly, in 2009 IEEE International Symposium on Assembly and Manufacturing IEEE, 2009; 95–100.
  • 15. Rembala R., Ower C. Robotic assembly and maintenance of future space stations based on the ISS mission operations experience. Acta Astronautica. 2009; 65(7–8): 912–920.
  • 16. Rosati G., Faccio M., Carli A., Rossi A. Fully flexible assembly systems (F‐FAS): a new concept in flexible automation. Assembly Automation. 2013; 33(1): 8–21.
  • 17. Rosati G., Faccio M., Carli A., Rossi A. Convenience analysis and validation of a fully flexible assembly system, in ETFA, 2011; 1–8.
  • 18. Sabadka D. Innovation methods for the production and non-production processes management in automotive industry. Transfer innovation. 2012; 14(22): 144–147.
  • 19. Malega P., Kádárová J., Kobulnický, J. Improvement of production efficiency of tapered roller bearing by using plant simulation. International Journal of Simulation Modelling. 2017; 16(4): 682–693.
  • 20. Sabadka D. Sustainable production in automotive industry. Interdisciplinarity in theory and practice. 2014; 4: 1–4.
  • 21. Senderská K., Mareš A. Use and creation of databases in the education process of study program Automotive production. Transfer innovation. 2009; 14(22): 128–131.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fca4849a-a0d7-44b2-945f-95122b764227
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.