PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unconfined laminar nanofluid flow and heat transfer around a rotating circular cylinder in the steady regime

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, steady flow-field and heat transfer through a copper-water nanofluid around a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 5 was investigated for Reynolds numbers of 5–40. Furthermore, the range of nanoparticle volume fractions considered is 0–5%. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are carried out by using a finite-volume method based commercial computational fluid dynamics solver. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds number and volume fraction of nanoparticles. In addition, rotation can be used as a drag reduction technique.
Rocznik
Strony
3--20
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wz.
Twórcy
autor
  • Military Academy of Cherchell, Tipaza, Algérie
autor
  • Université Mouloud Mammeri Tizi ouzou, Département de Génie Mécanique, Algérie
autor
  • University Saad Dahlab, Department of Mechanical Engineering, Blida 1, Algeria
autor
  • Université Kasdi Merbah Ouargla, Département de Génie Mécanique, Algérie
autor
  • Université Constantine 1, Département de Génie Mécanique, Constantine, Algérie
Bibliografia
  • [1] Paramane S.B., Sharma A.: Numerical investigation of heat and fluid flow across a rotating circular cylinder maintained at constant temperature in 2D laminar flow regime. Int. J. Heat Mass Tran. 52(2009), 13-14, 3205–3216.
  • [2] Paramane S.B., Sharma A.: Heat and fluid flow across a rotating cylinder dissipating uniform heat flux in 2D laminar flow regime. Int. J. Heat Mass Tran. 53(2010), 21-22, 4672–4683.
  • [3] Sufyan M., Manzoor S., Sheikh N.A.: Heat transfer suppression in flow around a rotating circular cylinder at high Prandtl number. Arab. J. Sci. Eng. 39(2014), 11, 8051–8063.
  • [4] Sharma V., Dhiman A.K.: Heat transfer from a rotating circular cylinder in the steady regime: Effects of Prandtl number. Thermal Sci. 16(2012), 1, 79–91.
  • [5] Sarit K. Das, Stephen U. Choi, Wenhua Yu, T. Pradeep: Nanofluids: Science and Technology. Wiley, New York 2007.
  • [6] Brinkman H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20(1952), 4, 571–581.
  • [7] Chang H., Jwo C.S., Lo C.H., Tsung T.T., Kao M.J., Lin H.M.: Rheology of CuO nanoparticle suspension prepared by ASNSS. Rev. Adv. Mater. Sci. 10(2005), 2, 128–132.
  • [8] Cieśliński J.T., Ronewicz K., Smoleń S.: Measurement of temperature-dependent viscosity and thermal conductivity of alumina and titania thermal oil nanofluids. Arch. Thermodyn. 36(2015), 4, 35–47.
  • [9] Valipour M.S., Ghadi A.Z.: Numerical investigation of fluid flow and heat transfer around a solid circular cylinder utilizing nanofluid. Int. Commun. Heat Mass 38(2011), 9, 1296–1304
  • [10] El-Bashbeshy E.S.M.A , Emam T.G., Abdel-Wahed M.S.: The effect of thermal radiation, heat generation and suction/injection on the mechanical pro properties prieties of unsteady continuous moving cylinder in a a nanofluid. Therm. Sci. 19(2015), 5, 1591–1601.
  • [11] Vegad M., Satadia S., Pradip P., Chirag P., Bhargav P.: Heat transfer characteristics of low Reynolds number flow of nanofluid around a heated circular cylinder. Proc. 2nd Int. Conf. Innovations in Automation and Mechatronics Engineering, ICIAME 2014, Procedia Technology 14(2014), 348–356.
  • [12] Farooji V.E., Bajestan E.E.,Niazmand H.,Wongwises S.: Unconfined laminar nanofluid flow and heat transfer around a square cylinder. Int. J. Heat Mass Tran. 55(2012), 5-6, 1475–1485.
  • [13] Valipour M.S., Masoodi R., Rashidi S., Bovand M., Mirhosseini M.: A numerical study on convection around a square cylinder using AL2O3-H2O nanofluid. Therm. Sci. 18(2014), 4, 1305–1314.
  • [14] Yu W., Choi S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwel l model. J. Nanopart. Res. 5(2003), 1, 167–71.
  • [15] Kang S., Choi H., and Lee S.: Laminar flow past a rotating circular cylinder. Phys. Fluids 11(1999), 11, 3312–3321; DOI: http://dx.doi.org/10.1063/1.870190.
  • [16] Mittal S., Kumar B.: Flow past a rotating cylinder. J. Fluid Mech. 476(2003), 303–334.
  • [17] Padrino J.C., Joseph D.D.: Numerical study of the steady-state uniform flow past a rotating cylinder. J. Fluid Mech. 557(2006), 191–223.
  • [18] Stojkovic D., Breuer M., Durst F.: Effect of high rotation rates on the laminar flow around a circular cylinder. Phys. Fluids 14(2002), 9, 3160–3178.
  • [19] GAMBIT. Gambit User’s guide V2.2, 2001.
  • [20] Fluent 6.3. User’s guide. Fluent Inc. 2006.
  • [21] Bouakkaz R., Talbi K., Khelil Y., Salhi F., Belghar N., Ouazizi M.: Numerical investigation of incompressible fluid flow and heat transfer around a rotating circular cylinder. Thermophys. Aeromech. 21(2014), 1, 87–97.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc9ffe2a-8687-45a2-8882-4d1bb7aeeaff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.