Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Formal tools and models of syntactic pattern recognition which are used in bioinformatics are introduced and characterized in the paper. They include, among others: stochastic (string) grammars and automata, hidden Markov models, programmed grammars, attributed grammars, stochastic tree grammars, Tree Adjoining Grammars (TAGs), algebraic dynamic programming, NLC- and NCE-type graph grammars, and algebraic graph transformation systems. The survey of applications of these formal tools and models in bioinformatics is presented.
Wydawca
Czasopismo
Rocznik
Tom
Strony
5--42
Opis fizyczny
Bibliogr. 212 poz., rys., tab., wykr.
Twórcy
autor
- Jagiellonian University, Information Technology Systems Department, Cracow 30-348, ul. prof. St. Lojasiewicza 4, Poland
Bibliografia
- [1] Abe N., Mamitsuka H.: Predicting protein secondary structure using stochastictree grammars,Machine Learning, vol. 29, pp. 275–301, 1997.
- [2] Agarwal S., Vaz C., Bhattacharya A., Srinivasan A.: Prediction of novel precursor miRNAs using a context-sensitive hidden Markov model (CSHMM), BMC Bioinformatics, vol. 11 (Suppl 1): S29, 2010. doi: 10.1186/1471-2105-11-s1-s29.
- [3] Ahola V., Aittokallio T., Uusipaikka E., Vihinen M.: Efficient estimation of emission probabilities in profile hidden Markov models, Bioinformatics, vol. 19, pp. 2359–2368, 2003. doi: 10.1093/bioinformatics/btg328
- [4] Alves J.M.P., de Oliveira A.L., Sandberg T.O.M., Moreno-Gallego J.L.,de Toledo M.A.F., de Moura E.M.M., Oliveira L.S.,et al.: GenSeed-HMM: A tool for progressive assembly using profile HMMs as seeds and its application in alpavirinae viral discovery from metagenomic data, Frontiers in Microbiology, vol. 7, 269, 2016. doi: 10.3389/fmicb.2016.00269.
- [5] Anderson J.W.J., Tataru P., Staines J., Hein J., Lyngsø R.: Evolving stochastic context-free grammars for RNA secondary structure prediction, BMC Bioinformatics, vol. 13, 78, 2012. doi: 10.1186/1471-2105-13-78.
- [6] Bagos P.G., Liakopoulos T.D., Hamodrakas S.J.: Evaluation of methods for predicting the topology of β-barrel outer membrane proteins and a consensus prediction method, BMC Bioinformatics, vol. 6, 7, 2005. doi: 10.1186/1471-2105-6-7.
- [7] Bagos P.G., Liakopoulos T.D., Spyropoulos I.C., Hamodrakas S.J.: A hidden Markov model method, capable of predicting and discriminating β-barrel outer membrane proteins, BMC Bioinformatics, vol. 5, 29, 2004. doi: 10.1186/1471-2105-5-29.
- [8] Bagos P.G., Liakopoulos T.D., Spyropoulos I.C., Hamodrakas S.J.: PRED-TMBB: a web server for predicting the topology of β-barrel outermembrane proteins, Nucleic Acids Research, vol. 32, pp. W400–W404, 2004. doi: 10.1093/nar/gkh417.
- [9] Baldi P., Brunak S.: Bioinformatics: The Machine Learning Approach, MIT Press, Cambridge, MA, 2001.
- [10] Baldi P., Chauvin Y., Hunkapillar T., McClure M.: Hidden Markov models of biological primary sequence information, Proceedings of the National Academy of Sciences of the USA, vol. 91, pp. 1059–1063, 1994. doi: 10.1073/pnas.91.3.1059.
- [11] Baum L.E., Petrie T.: Statistical inference for probabilistic functions of finite state Markov chains, The Annals of Mathematical Statistics, vol. 37, pp. 1554–1563, 1966. doi: 10.1214/aoms/1177699147.
- [12] Bellman R.: Dynamic Programming, Princeton University Press, Princeton, NJ, 1957. doi: 10.2307/j.ctv1nxcw0f.
- [13] Bentolila S.: A grammar describing ‘biological binding operators’ to modelgene regulation, Biochimie, vol. 78, pp. 335–350, 1996. doi: 10.1016/0300-9084(96)84766-3.
- [14] Berkemer S.J., zu Siederdissen Honer C., Stadler P.F.: Algebraic dynamic programming on trees, Algorithms, vol. 10, 135, 2017. doi: 10.3390/a10040135.
- [15] Bernardes J.S., Davila A.M.R., Costa V.S., Zaverucha G.: Improving model construction of profile HMMs for remote homology detection through structural alignment, BMC Bioinformatics, vol. 8, 435, 2007. doi: 10.1186/1471-2105-8-435.
- [16] Bhargava B.K., Fu K.: Stochastic tree systems for syntactic pattern recognition. In: Proceedings of Twelfth Annual Allerton Conference on Circuit and SystemTheory, pp. 278–287, Monticello, IL, 1974.
- [17] Booth T.L., Thompson R.A.: Applying probability measures to abstract languages, IEEE Trans Computers, vol. 22, pp. 442–450, 1973. doi: 10.1109/t-c.1973.223746.
- [18] Brainerd W.S.: Tree generating regular systems, Information and Control, vol. 14, pp. 217–231, 1969. doi: 10.1016/s0019-9958(69)90065-5.
- [19] Bralley P.: An introduction to molecular linguistics, BioScience, vol. 46,pp. 146–153, 1996. doi: 10.2307/1312817.
- [20] Brandenburg F.J.: On the complexity of the membership problem of graph grammars. In: Proceedings of the Workshop on Graphtheoretic Concepts in Computer Science, pp. 40–49, Osnabr ̈uck, Germany, 1983.
- [21] Brejov a B., Brown D.G., Vinar T.: The most probable annotation problem in HMMs and its application to bioinformatics, Journal of Computer and System Sciences, vol. 73, pp. 1060–1077, 2007. doi: 10.1016/j.jcss.2007.03.011.
- [22] Brendel V., Busse H.G.: Genome structure described by formal languages, Nucleic Acids Research, vol. 12, pp. 2561–2568, 1984.
- [23] Brown M., Wilson C.: RNA pseudoknot modeling using intersections of stochastic context free grammars with applications to database search. In: Proceedings of 1996 Pacific Symposium on Biocomputing, pp. 109–125, Hawaii, 1996.
- [24] Brown M.P.: Small subunit ribosomal RNA modeling using stochastic context-free grammars. In: Proceedings of 8th International Conference on Intelligent Systems for Molecular Biology, pp. 57–66, San Diego, CA, USA, 2000.
- [25] Bunke H., Sanfeliu A. (eds.):Syntactic and Structural Pattern Recognition – Theory and Applications, World Scientific, Singapore, 1990. doi: 10.1142/0580.
- [26] Bystroff C., Krogh A.: Hidden Markov models for prediction of protein features. In: M. Zaki, C. Bystroff (eds.), Protein Structure Prediction. Methods in Molecular Biology, pp. 173–198, Humana Press, New Jersey, 2008. doi: 10.1007/978-1-59745-574-97.
- [27] Bystroff C., Shao Y., Yuan X.: Five hierarchical levels of sequence-structure correlation in proteins, Applied Bioinformatics, vol. 3, pp. 97–104, 2004. doi: 10.2165/00822942-200403020-00004.
- [28] Cai L., Malmberg R., Wu Y.: Stochastic modeling of RNA pseudoknotted structures: A grammatical approach, Bioinformatics, vol. 19, pp. i66–i73, 2003.doi: 10.1093/bioinformatics/btg1007.
- [29] Cai Y., Lux M.W., Adam L., Peccoud J.: Modeling structure-function relation-ships in synthetic DNA sequences using attribute grammars, PLoS Computational Biology, vol. 5, e1000529, 2009. doi: 10.1371/journal.pcbi.1000529.
- [30] Chiang D., Joshi A.K., Searls D.B.: Grammatical representations of macro-molecular structure, Journal of Computational Biology, vol. 13, pp. 1077–1100,2006. doi: 10.1089/cmb.2006.13.1077.
- [31] Collado-Vides J.: A transformational-grammar approach to the study of the regulation of gene expression, Journal of Theoretical Biology, vol. 136, pp. 403–425,1989. doi: 10.1016/s0022-5193(89)80156-0.
- [32] Collado-Vides J.: A syntactic representation of units of genetic information – A syntax of units of genetic information, Journal of Theoretical Biology, vol 148,pp. 401–429, 1991. doi: 10.1016/s0022-5193(05)80245-0.
- [33] Collado-Vides J.: Grammatical model of the regulation of gene expression, Proceedings of the National Academy of Sciences of the United States of America, vol. 89, pp. 9405–9409, 1992. doi: 10.1073/pnas.89.20.9405.
- [34] Corn S.: Explicit definitions and linguistics dominoes. In: J.F. Hart, S. Takasu (eds.), Systems and Computer Science, University of Toronto Press, Toronto, 1967.
- [35] Coste F.: Learning the language of biological sequences. In: J. Heinz, J.M. Sempere (eds.), Topics in Grammatical Inference, pp. 215–247, Springer, 2016.doi: 10.1007/978-3-662-48395-48.
- [36] Datta S., Mukhopadhyay S.: A composite method based on formal grammarand DNA structural features in detecting human polymerase II promoter region, PLoS ONE, vol. 8, e54843, 2013. doi: 10.1371/journal.pone.0054843.
- [37] Dill K.E., Lucas A., Hockenmaier J., Huang L., Chiang D., Joshi A.K.: Computational linguistics: A new tool for exploring biopolymer structures andstatistical mechanics, Polymer, vol. 48, pp. 4289–4300, 2007. doi: 10.1016/j.polymer.2007.05.018.
- [38] Ding L., Samad A., Xue X., Huang X., Malmberg R.L., Cai L.: Stochastick-tree grammar and its application in biomolecular structure modeling, Lecture Notes in Computer Science, vol. 8370, pp. 308–322, 2014. doi: 10.1007/978-3-319-04921-225.
- [39] Do C.B., Mahabhashyam M.S., Brudno M., Batzoglou S.: ProbCons: Probabilistic consistency-based multiple sequence alignment, Genome Research, vol. 15, pp. 330–340, 2005. doi: 10.1101/gr.2821705.
- [40] Do C.B., Woods D.A., Batzoglou S.: CONTRA fold: RNA secondary structure prediction without physics-based models, Bioinformatics, vol. 22, pp. e90–e98,2006. doi: 10.1093/bioinformatics/btl246.
- [41] Dong S., Searls D.B.: Gene structure prediction by linguistic methods,Genomics, vol. 23, pp. 540–551, 1994. doi: 10.1006/geno.1994.1541.
- [42] Dowell R.D., Eddy S.R.: Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction, BMC Bioinformatics, vol. 5, 71, 2004. doi: 10.1186/1471-2105-5-71.
- [43] Duda R.O., Hart P.E., Stork D.G.: Pattern Classification, Wiley, NewYork, 2001.
- [44] Durbin R., Eddy S.R., Krogh A., Mitchison G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press, Cambridge, UK, 2002.
- [45] Dyrka W., Nebel J.C.: A stochastic context free grammar based frameworkfor analysis of protein sequences, BMC Bioinformatics, vol. 10, 323, 2009.doi: 10.1186/1471-2105-10-323.
- [46] Dyrka W., Nebel J.C., Kotulska M.: Probabilistic grammatical model of proteinlanguage and its application to helix-helix contact site classification, Algorithmsfor Molecular Biology, vol. 8, 31, 2013.
- [47] Eddy S.R.: Profile hidden Markov models, Bioinformatics, vol. 14, pp. 755–763,1998. doi: 10.1093/bioinformatics/14.9.755.
- [48] Eddy S.R.: What is a hidden Markov model? Nature Biotechnology, vol. 22,pp. 1315–1316, 2004. doi: 10.1038/nbt1004-1315.
- [49] Eggers D., zu Siederdissen Honer H.C., Stadler P.F.: Accuracy of RNA structure prediction depends on the pseudoknot grammar, Lecture Notes in ComputerScience, vol. 13523, pp. 20–31, 2022. doi: 10.1007/978-3-031-21175-13.
- [50] Ehrig H., Ehrig K., Prange U., Taentzer G.: Fundamentals of Algebraic Graph Transformation, Springer, Berlin-Heidelberg, 2006.
- [51] Ehrig H., Engels G., Kreowski H.J., Rozenberg G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 2: Applications, Languages and Tools, World Scientific, Singapore, 1999. doi: 10.1142/9789812815149.
- [52] Ehrig H., Kreowski H. J.: Pushout-properties: An analysis of gluing constructions for graphs, Mathematische Nachrichten, vol. 91, pp. 135–149, 1979. doi: 10.1002/mana.19790910111.
- [53] Ehrig H., Pfender M., Schneider H.J.: Graph grammars: An algebraic approach. In: Proceedings of 14th Annual IEEE Symposium on Switching and Automata Theory, pp. 167–180, 1973. doi: 10.1109/swat.1973.11.
- [54] Flasiński M.: Parsing of edNLC-graph grammars for scene analysis, Pattern Recognition, vol. 21, pp. 623–629, 1988. doi: 10.1016/0031-3203(88)90034-9.
- [55] Flasiński M.: Distorted pattern analysis with the help of Node Label Controlled graph languages, Pattern Recognition, vol. 23, pp. 765–774, 1990. doi: 10.1016/0031-3203(90)90099-7.
- [56] Flasiński M.: On the parsing of deterministic graph languages for syntactic pattern recognition, Pattern Recognition, vol. 26, pp. 1–16, 1993. doi: 10.1016/0031-3203(93)90083-9.
- [57] Flasiński M.: Use of graph grammars for the description of mechanical parts, Computer-Aided Design, vol. 27, pp. 403–433, 1995. doi: 10.1016 / 0010 -4485(94)00015-6.
- [58] Flasiński M.: Power properties of NLC graph grammars with a polynomial membership problem, Theoretical Computer Science, vol. 201, pp. 189–231, 1998.doi: 10.1016/s0304-3975(97)00212-0.
- [59] Flasiński M.: Inference of parsable graph grammars for syntactic pattern recognition, Fundamenta Informaticae, vol. 80, pp. 379–413, 2007.
- [60] Flasiński M.: Introduction to Artificial Intelligence, Springer International, Switzerland, 2016. doi: 10.1007/978-3-319-40022-8.
- [61] Flasiński M.: Syntactic Pattern Recognition, World Scientific, New Jersey-London-Singapore, 2019.
- [62] Flasiński M., Jurek J.: Dynamically programmed automata for quasi contexts ensitive languages as a tool for inference support in pattern recognition-basedreal-time control expert systems, Pattern Recognition, vol. 32, pp. 671–690, 1999.doi: 10.1016/s0031-3203(98)00115-0.
- [63] Flasiński M., Kotulski L.: On the use of graph grammars for the control of a distributed software allocation, The Computer Journal, vol. 35,pp. A165–A175 1992.
- [64] Flasiński M., Lewicki G.: The convergent method of constructing polynomial discriminant functions for pattern recognition, Pattern Recognition, vol. 24,pp. 1009–1015, 1991. doi: 10.1016/0031-3203(91)90098-p.
- [65] Flasiński M., Myśliński S.: On the use of graph parsing for recognition of isolated hand postures of Polish Sign Language, Pattern Recognition, vol. 43,pp. 2249–2264, 2010. doi: 10.1016/j.patcog.2010.01.004.
- [66] Flasiński M., Jurek J., Peszek T.: Multi-derivational parsing of vague languages – the new paradigm of syntactic pattern recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 46, 2024. doi: 10.1109/tpami.2024.3367245.
- [67] Fonzo de V., Aluffi-Pentini F., Parisi V.: Hidden Markov models in bioinformatics, Current Bioinformatics, vol. 2, pp. 49–61, 2007.doi: 10.2174/157489307779314348.
- [68] Fu K.S.: Stochastic tree languages and their application to picture processing. In: P.R. Krishnaiah (ed.), Multivariate Analysis V, North-Holland, Amsterdam, 1980.
- [69] Fu K.S.: Stochastic automata, stochastic languages and pattern recognition, Journal of Cybernetics, vol. 1, pp. 31–49, 1971.
- [70] Fu K.S.: Syntactic Pattern Recognition and Applications, Prentice Hall, Englewood Cliffs, 1982.
- [71] Fu K.S., Huang T.: Stochastic grammars and languages, International Journalof Computer and Information Sciences, vol. 1, pp. 135–170, 1972. doi: 10.1007/bf00995736.
- [72] Fu K.S., Li T.: On stochastic automata and languages, Information Sciences, vol. 1, pp. 403–419, 1969. doi: 10.1016/0020-0255(69)90024-3.
- [73] Gallego A.J., Lopez D., Calera-Rubio J.: Grammatical inference of directed acyclic graph languages with polynomial time complexity, Journal of Computerand System Sciences, vol. 95, pp. 19–34, 2018. doi: 10.1016/j.jcss.2017.12.002.
- [74] Gecseg F., Steinby M.: Tree Automata, Akademiai Kiado, Budapest, 1984.
- [75] Ghouila A., Florent I., Guerfali F.Z., Terrapon N., Laouini D., Yahia S.B., Gascuel O., et al.: Identification of Divergent Protein Domains by Combining HMM-HMM Comparisons and Co-Occurrence Detection, PLoS ONE, vol. 9, e95275, 2014. doi: 10.1371/journal.pone.0095275.
- [76] Giegerich R.:A declarative approach to the development of dynamic programming algorithms, applied to RNA folding, Tech. rep., Bielefeld University, Germany, 1998.
- [77] Giegerich R.: Explaining and controlling ambiguity in dynamic programming, Lecture Notes in Computer Science, vol. 1848, pp. 46–59, 2000. doi: 10.1007/3-540-45123-46.
- [78] Giegerich R.: A systematic approach to dynamic programming in bioinformatics, Bioinformatics, vol. 16(8), pp. 665–677, 2000. doi: 10.1093/bioinformatics/16.8.665.
- [79] Giegerich R., Meyer C.: Algebraic Dynamic Programming, Lecture Notes in Computer Science, vol. 2422, pp. 349–364, 2002. doi: 10.1007/3-540-45719-424.
- [80] Giegerich R., Touzet H.: Modeling dynamic programming problems over sequences and trees with inverse coupled rewrite systems, Algorithms, vol. 7,pp. 62–144, 2014. doi: 10.3390/a7010062.
- [81] Giegerich R., Meyer C., Steffen P.: Towards a discipline of dynamic programming, Lecture Notes in Informatics, vol. P-147, pp. 3–44, 2002.
- [82] Giegerich R., Meyer C., Steffen P.: A discipline of dynamic programming oversequence data, Science of Computer Programming, vol. 51, pp. 215–263, 2004. doi: 10.1016/j.scico.2003.12.005.
- [83] Golab T., Ledley R.S., Rotolo L.S.: FIDAC: Film input to digital automatic computer, Pattern Recognition, vol. 3, pp. 123–156, 1971. doi: 10.1016/0031-3203(71)90035-5.
- [84] Gollery M. (ed.): Handbook of Hidden Markov Models in Bioinformatics, Chapman and Hall / CRC, Boca Raton, FL, 2008. doi: 10.1201/9781420011807.
- [85] Grenander U.:Syntax-controlled probabilities, Tech. rep., Brown University, Providence, R.I., 1967.
- [86] Harmanci A.O., Sharma G., Mathews D.H.: Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign, BMC Bioinformatics, vol. 8, 130, 2007.
- [87] Haussler D., Krogh A., Mian I.S., Sj ̈oander K.: Protein modeling using hidden Markov models: analysis of globins. In: Proceedings of 26th Annual Hawaii International Conference on Systems Sciences, pp. 792–802, 1993.
- [88] Head T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors, Bulletin of Mathematical Biology, vol. 49, pp. 737–759, 1987. doi: 10.1016/s0092-8240(87)90018-8.
- [89] Holmes I., Rubin G.M.: Pairwise RNA structure comparison with stochasticc ontext-free grammars. In: Proceedings of 2002 Pacific Symposium on Biocomputing, pp. 163–174, Hawaii, 2002.
- [90] Horan K., Shelton C., Girke T.: Predicting conserved protein motifs with Sub-HMMs, BMC Bioinformatics, vol. 11, 205, 2010. doi: 10.1186/1471-2105-11-205.
- [91] Hsu B.Y., Wong T.K.F., Hon W.K., Liu X., Lam T.W., Yiu S.M.: A Local Structural Prediction Algorithm for RNA Triple Helix Structure. In: A. Ngom, E. Formenti, J.K. Hao, X.M. Zhao, T. van Laarhoven (eds.), Pattern Recognitionin Bioinformatics. PRIB 2013. Lecture Notes in Computer Science, vol. 7968, pp. 102–113, 2013. doi: 10.1007/978-3-642-39159-010.
- [92] Huang T., Fu K.S.: Stochastic syntactic analysis for programmed grammars and syntactic pattern recognition, Computer Graphics and Image Processing, vol. 1, pp. 257–283, 1972. doi: 10.1016/s0146-664x(72)80018-2.
- [93] Janssen S., Giegerich R.: Faster computation of exact RNA shape probabilities, Bioinformatics, vol. 26, pp. 632–639, 2010. doi: 10.1093/bioinformatics/btq014.
- [94] Janssens D., Rozenberg G.: On the structure of node-label-controlled graphlanguages, Information Sciences, vol. 20, pp. 191–216, 1980. doi: 10.1016/0020-0255(80)90038-9.
- [95] Janssens D., Rozenberg G.: Restrictions, extensions, and variations of NLC grammars, Information Sciences, vol. 20, pp. 217–244, 1980. doi: 10.1016/0020-0255(80)90039-0.
- [96] Janssens D., Rozenberg G.: Graph grammars with neighbourhood-controlled embedding, Theoretical Computer Science, vol. 21, pp. 55–74, 1982.doi: 10.1016/0304-3975(82)90088-3.
- [97] Janssens D., Rozenberg G., Verraedt R.: On sequential and parallel noderewriting graph grammars, Computer Graphics and Image Processing, vol. 18, pp. 279–304, 1982. doi: 10.1016/0146-664x(82)90036-3.
- [98] Johnson L.S., Eddy S.R., Portugaly L.: Hidden Markov model speed heuristicand iterative HMM search procedure, BMC Bioinformatics, vol. 11, 431, 2010.doi: 10.1186/1471-2105-11-431.
- [99] Jonyer I., Holder L.B., Cook D.J.: MDL-based context-free graph grammar induction and applications, International Journal on Artificial Intelligence Tools, vol. 13, pp. 65–79, 2004. doi: 10.1142/s0218213004001429.
- [100] Joshi A.K.: How much context-sensitivity is necessary for characterizing structural descriptions – Tree Adjoining Grammars. In: D. Dowty, et al.(eds.), Natural Language Processing – Theoretical, Computational and Psychological Perspective, Cambridge University Press, New York, NY, 1985.
- [101] Joshi A.K., Levy L.S., Takahashi M.: Tree adjunct grammars, Journal of Computer and System Sciences, vol. 10, pp. 136–163, 1975. doi: 10.1016/s0022-0000(75)80019-5.
- [102] Joshi A.K., Schabes Y.: Tree adjoining grammars. In: G. Rozenberg, A. Salomaa(eds.), Handbook of Formal Languages – III, pp. 69–123, Springer, New York,NY, 1997. doi: 10.1007/978-3-642-59126-62.
- [103] Kall L., Krogh A., Sonnhammer E.: An HMM posterior decoder for sequence feature prediction that includes homology information, Bioinformatics, vol. 21,pp. i251–i257, 2005. doi: 10.1093/bioinformatics/bti1014.
- [104] Karplus K., Barrett C., Hughey R.: Hidden Markov models for detecting remote protein homologies, Bioinformatics, vol. 14, pp. 846–856, 1998. doi: 10.1093/bioinformatics/14.10.846.
- [105] Kato Y., Akutsu T., Seki H.: A grammatical approach to RNA-RNA interaction prediction, Pattern Recognition, vol. 42, pp. 531–538, 2009. doi: 10.1016/j.patcog.2008.08.004.
- [106] Kato Y., Seki H., Kasami T.: Subclasses of tree adjoining grammars for RNA secondary structure. In: Proceedings of 7th International Workshop on Tree Adjoining Grammar and Related Formalisms, pp. 48–55, Vancouver, Canada, 2004.
- [107] Kato Y., Seki H., Kasami T.: Stochastic multiple context-free grammar for RNA pseudoknot modeling. In:Proceedings of 8th International Workshop onTree Adjoining Grammar and Related Formalisms, pp. 57–64, Sydney, Australia, 2006. doi: 10.3115/1654690.1654698.
- [108] Kennedy P.J., Osborn T.R.: A model of gene expression and regulation in anartificial cellular organism, Complex Systems, vol. 13, pp. 33–59, 2001.
- [109] Kirsch R.A.: Computer determination of the constituent structure of biological images, Computers and Biomedical Research, vol. 4, pp. 315–328, 1971. doi: 10.1016/0010-4809(71)90034-6.
- [110] Knudsen B., Hein J.: RNA secondary structure prediction using stochastic context-free grammars and evolutionary history, Bioinformatics, vol. 15,pp. 446–454, 1999. doi: 10.1093/bioinformatics/15.6.446.
- [111] Knudsen B., Hein J.: Pfold: RNA secondary structure prediction using stochastic context-free grammars, Nucleic Acids Research, vol. 31, pp. 3423–3428, 2003.
- [112] Knudsen B., Miyamoto M.M.: Sequence alignments and pair hidden Markov models using evolutionary history, Journal of Molecular Biology, vol. 333, pp. 453–460, 2003. doi: 10.1016/j.jmb.2003.08.015.
- [113] Knuth D.: Semantics of context-free languages, Mathematical Systems Theory, vol. 2, pp. 127–145, 1968. doi: 10.1007/bf01692511.
- [114] Koutroumbas K., Theodoridis S.: Pattern Recognition, Academic Press, Boston, 2008.
- [115] Krogh A., Brown M., Mian I.S., Sjoander K., Haussler D.: Hidden Markov models in computational biology: Applications to protein modeling, Journal of Molecular Biology, vol. 235, pp. 1501–1531, 1994.
- [116] Krogh A., Larsson B., Heijne von G., Sonnhammer E.: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes, Journal of Molecular Biology, vol. 305, pp. 567–580, 2001.
- [117] Krogh A., Mian I.S., Haussler D.: A hidden Markov model that finds genes in E. coli DNA, Nucleic Acids Research, vol. 22, pp. 4768–4778, 1994.
- [118] Kulp D., Haussler D., Reese M.G., Eeckman F.H.: A Generalized Hidden Markov Model for the Recognition of Human Genes in DNA. In: Proceedings of the 4th International Conference on Intelligent Systems for Molecular Biology, pp. 134–142, St. Louis, MO, USA, 1996.
- [119] Lasfar M., Bouden H.: A method of data mining using Hidden Markov Models(HMMs) for protein secondary structure prediction, Procedia Computer Science, vol. 127, pp. 42–51, 2018. doi: 10.1016/j.procs.2018.01.096.
- [120] Ledley R.S.: High-speed automatic analysis of biomedical pictures, Science, vol 146, pp. 216–223, 1964. doi: 10.1126/science.146.3641.216.
- [121] Ledley R.S., Rotolo L.S., Golab T.J., Jacobsen J.D., Ginsberg M.D., Wilson J.B.: FIDAC: Film input to digital automatic computer and associated syntax-directed pattern-recognition programming system. In: J.T. Tippet,D. Beckovitz, L. Clapp, C. Koester, A. Vanderburgh Jr. (eds.), Optical and Electro-optical Information Processing, pp. 591–613, MIT Press, Cambridge, MA, 1965.
- [122] Lee H.C., Fu K.S.: A stochastic syntax analysis procedure and its application to pattern classification, IEEE Transactions on Computers, vol. 21, pp. 660–666,1972. doi: 10.1109/t-c.1972.223571.
- [123] Lefebvre F.: A grammar-based unification of several alignment and folding algorithms. In: Proceedings of 4th International Conference on Intelligent Systems for Molecular Biology, pp. 143–154, St. Louis, MO, USA, 1996.
- [124] Leung S., Mellish C., Robertson D.: Basic Gene Grammars and DNA-ChartParser for language processing of Escherichia coli promoter DNA sequences, Bioinformatics, vol. 17, pp. 226–236, 2001.
- [125] Levenshtein V.I.: Binary codes capable of correcting deletions, insertions and reversals, Soviet Physics Doklady, vol. 10, pp. 707–710, 1966.
- [126] Li J., Lee J., Liao L.: A new algorithm to train hidden Markov models for biological sequences with partial labels, BMC Bioinformatics, vol. 22, 162, 2021. doi: 10.1186/s12859-021-04080-0.
- [127] Li M., Cheng M., Ye Y., Hon W., Ting H., Lam T., Tang C.,et al.: Predicting RNA secondary structures: One-grammar-fits-all solution, Lecture Notes in Computer Science, vol. 9096, pp. 211–222, 2015. doi: 10.1007/978-3-319-19048-818.
- [128] Liang K.C., Wang X., Anastassiou D.: Bayesian Basecalling for DNA Sequence Analysis Using Hidden Markov Models, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 4(3), pp. 430–440, 2007. doi: 10.1109/tcbb.2007.1027.
- [129] Liu L., Mori T., Zhao Y., Hayashida M., Akutsu T.: Euler string-based compression of tree-structured data and its application to analysis of RNAs, Current Bioinformatics, vol. 13, pp. 25–33, 2018.doi: 10.2174 /1574893611666160608102231.
- [130] Lobo D., Vico F.J., Dassow J.: Graph grammars with string-regulated rewriting, Theoretical Computer Science, vol. 412, pp. 6101–6111, 2011. doi: 10.1016/j.tcs.2011.07.004.
- [131] Lottaz C., Iseli C., Jongeneel C.V., Bucher P.: Modeling sequencing errors by combining hidden Markov models, Bioinformatics, vol. 19 (Suppl. 2), pp. i103–i112, 2003. doi: 10.1093/bioinformatics/btg1067.
- [132] Lu S.Y., Fu K.S.: Structure-preserved error-correcting tree automata for syntactic pattern recognition. In:1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes, pp. 413–419, Clearwater, FL, USA, 1976. doi: 10.1109/cdc.1976.267768.
- [133] Lyngsø R.B., Pedersen C.N.: RNA pseudoknot prediction in energy-based models, Journal of Computational Biology, vol. 7, pp. 409–427, 2000. doi: 10.1089/106652700750050862.
- [134] Majoros W.H., Pertea M., Delcher A.L., Salzberg S.L.: Efficient decoding algorithms for generalized hidden Markov model gene finders, BMC Bioinformatics, vol. 6, 16, 2005. doi: 10.1186/1471-2105-6-16.
- [135] Mamitsuka H., Abe N.: Predicting location and structure of beta-sheet regionsusing stochastic tree grammars. In: Proceedings of 2nd International Conference on Intelligent Systems for Molecular Biology, pp. 276–284, Stanford, CA, USA, 1994.
- [136] Mamuye A., Merelli E., Tesei L.: A graph grammar for modelling RNA folding. In: Proceedings of 2nd Graphs as Models Workshop, pp. 31–41, Eindhoven, The Netherlands, 2016. doi: 10.4204/eptcs.231.3.
- [137] Marchand B., Will S., Berkemer S.J., Ponty Y., Bulteau L.: Automated design of dynamic programming schemes for RNA folding with pseudoknots. In: Proceedings of 22nd International Workshop on Algorithms in Bioinformatics, pp. 7:1–7:24, Potsdam, Germany, 2022. doi: 10.1186/s13015-023-00229-z.
- [138] Markov A.A.: Essai dune recherche statistique sur le texte du roman Eugene Onegin illustrant la liais on des epreuve en chain, Bulletin de l’Academie Imperiale des Sciences de St-Petersbourg, vol. 7, pp. 153–162, 1913.
- [139] Matsui H., Sato K., Sakakibara Y.: Pair stochastic tree adjoining grammars for aligning and predicting pseudok not RNA structures, Bioinformatics, vol. 21, pp. 2611–2617, 2005. doi: 10.1093/bioinformatics/bti385.
- [140] Menichelli C., Gascuel O., Brehelin L.: Improving pairwise comparison of protein sequences with domain co-occurrence, PLoS Computational Biology, vol. 14, e1005889, 2018. doi: 10.1371/journal.pcbi.1005889.
- [141] Muggleton S., Bryant C., Srinivasan A., Whittaker A., Topp S., Rawlings C.: Are grammatical representations useful for learning from biological sequencedata? A case study, Journal of Computational Biology, vol. 8, pp. 493–522, 2001.
- [142] Munch K., Krogh A.: Automatic generation of gene finders for eukaryotic species, BMC Bioinformatics, vol. 7, 263, 2006. doi: 10.1186/1471-2105-7-263.
- [143] Nebel M.E., Weinberg F.: Algebraic and combinatorial properties of common RNA pseudoknot classes with applications, Journal of Computational Biology, vol. 19, pp. 1134–1150, 2012. doi: 10.1089/cmb.2011.0094.
- [144] Pachter L., Alexandersson M., Cawley S.: Applications of generalized pair hidden Markov models to alignment and gene finding problems, Journal of Computational Biology, vol. 9, pp. 389–399, 2002. doi: 10.1089/10665270252935520.
- [145] Pavlidis T.: Structural descriptions and graph grammars. In: S.K. Chang, K.S. Fu (eds.), Pictorial Information Systems, pp. 86–103, Springer, Berlin–Heidelberg–New York, 1980. doi: 10.1007/3-540-09757-04.
- [146] Pedersen J.C., Hein J.: Gene finding with a hidden Markov model of genome structure and evolution, Bioinformatics, vol. 19, pp. 219–227, 2003. doi: 10.1093/bioinformatics/19.2.219.
- [147] Peris P., Lopez D., Campos M.: IgTM: An algorithm to predict transmembrane domains and topology in proteins, BMC Bioinformatics, vol. 9, 367, 2008. doi: 10.1186/1471-2105-9-367.
- [148] Plotz T., Fink G.A.: Pattern recognition methods for advanced stochastic protein sequence analysis using HMMs, Pattern Recognition, vol. 39, pp. 2267–2280,2006. doi: 10.1016/j.patcog.2005.10.007.
- [149] Ponty Y.: Ensemble Algorithms and Analytic Combinatorics in RNA Bioinformatics and Beyond, Universite Paris-Saclay, 2020.
- [150] Porter T., Hajibabaei M.: Profile hidden Markov model sequence analysis can help remove putative pseudogenes from DNA barcoding and metabarcod in gdatasets, BMC Bioinformatics, vol. 22, 256, 2021. doi: 10.1186/s12859- 021-04180-x.
- [151] Przytycka T., Srinivasan R., Rose G.D.: Recursive domains in proteins, Protein Science, vol. 11, pp. 409–417, 2002. doi: 10.1110/ps.24701.
- [152] Quadrini M., Tesei L., Merelli E.: An algebraic language for RNA pseudoknot scomparison, BMC Bioinformatics, vol. 20, 161, 2019. doi: 10.1186/s12859-019-2689-5.
- [153] Rabin M.O.: Probabilistic automata, Information and Control, vol. 6,pp. 230–245, 1963. doi: 10.1016/s0019-9958(63)90290-0.
- [154] Reese M.G., Kulp D., Tammana H., Haussler D.:Geniegene finding in Drosophila melanogaster, Genome Research, vol. 10, pp. 529–538, 2000.
- [155] Riechert M., zu Siederdissen H ̈oner C.H., Stadler P.F.: Algebraic dynamic programming for multiple context-free grammar, Theoretical Computer Science, vol. 639, pp. 91–109, 2016. doi: 10.1016/j.tcs.2016.05.032.
- [156] Ripley B.D.: Pattern Recognition and Neural Networks, Cambridge University Press, Cambridge, 2008.
- [157] Rivas E., Eddy S.R.: The language of RNA: a formal grammar that includes pseudoknots, Bioinformatics, vol. 16(4), pp. 334–340, 2000. doi: 10.1093/bioinformatics/16.4.334.
- [158] Rivas E., Eddy S.R.: Noncoding RNA gene detection using comparatives equence analysis, BMC Bioinformatics, vol. 2, 8, 2001. doi: 10.1186/1471-2105-2-8.
- [159] Rosenblueth D.A., Thieffry D., Huerta A.M., Salgado H., Collado-Vides J.: Syntactic recognition of regulatory regions in Escherichia coli, Computer Applications in the Biosciences, vol. 12, pp. 415–422, 1996.
- [160] Rosenkrantz D.J.: Programmed grammars and classes of formal languages, Journal of the Association for Computing Machinery, vol. 16, pp. 107–131, 1969. doi: 10.1145/321495.321504.
- [161] Sakakibara Y.: Grammatical inference in bioinformatics, IEEE Transactionson Pattern Analysis and Machine Intelligence, vol. 27, pp. 1051–1062, 2005. doi: 10.1109/tpami.2005.140
- [162] Sakakibara Y., Brown M., Hughey R., Mian I.S., Sjolander K., Underwood R.C., Haussler D.: Stochastic context-free grammars for tRNA modeling, Nuclear Acids Research, vol. 22(23), pp. 5112–5120, 1994. doi: 10.1093/nar/22.23.5112.
- [163] Salomaa A.: Probabilistic and weighted grammars, Information and Control, vol. 15, pp. 529–544, 1969. doi: 10.1016/s0019-9958(69)90554-3.
- [164] Sanchez-Graillet O., Poesio M.: Negation of protein-protein interactions: analysis and extraction, Bioinformatics, vol. 23, pp. i424–i432, 2007. doi: 10.1093/bioinformatics/btm184.
- [165] Sato K., Hamada M.: Recent trends in RNA informatics: a review of machine learning and deep learning for RNA secondary structure prediction and RNA drug discovery, Briefings in Bioinformatics, vol. 24, 2023. doi: 10.1093/bib/bbad186.
- [166] Sauthoff G., Giegerich R.: Yield grammar analysis and product optimizationin a domain-specific language for dynamic programming, Science of Computer Programming, vol. 87, pp. 2–22, 2014. doi: 10.1016/j.scico.2013.09.011.
- [167] Schalkoff R.: Pattern Recognition: Statistical, Structural and Neural Approaches, Wiley, New York, 2005.
- [168] Searls D.B.: The linguistics of DNA, American Scientist, vol. 80(6), pp. 579–591, 1992.
- [169] Searls D.B.: The computational linguistics of biological sequences. In: L. Hunter(ed.), Artificial Intelligence and Molecular Biology, pp. 47–120, AAAI/MITPress, Menlo Park, CA, 1993.
- [170] Searls D.B.: String Variable Grammar: a logic grammar formalism for DNA sequences, The Journal of Logic Programming, vol. 24, pp. 73–102, 1995.
- [171] Searls D.B.: Linguistic approaches to biological sequences, Bioinformatics, vol. 13, pp. 333–344, 1997. doi: 10.1093/bioinformatics/13.4.333.
- [172] Searls D.B.: Reading the book of life, Bioinformatics, vol. 17, pp. 579–580, 2001. doi: 10.1093/bioinformatics/17.7.579.
- [173] Searls D.B.: The language of genes, Nature, vol. 420, pp. 211–217, 2002. doi: 10.1038/nature01255.
- [174] Seesi S.A., Rajasekaran S., Ammar R.: Pseudoknot Identification through Learning TAGRNA. In: M. Chetty, A. Ngom, S. Ahmad (eds.), Pattern Recognition in Bioinformatics. PRIB 2008. Lecture Notes in Computer Science, vol. 5265, pp. 132–143, Springer, Berlin, Heidelberg, 2008. doi: 10.1007/978-3-540-88436-112.
- [175] Seki H., Matsumura T., Fujii M., Kasami T.: On multiple context-free grammars, Theoretical Computer Science, vol. 88, pp. 191–229, 1991. doi: 10.1016/0304-3975(91)90374-b.
- [176] Seoud R.A.A., Youssef A.B.M., Kadah Y.M.: Extraction of protein interaction information from unstructured text using a link grammar parser. In: Proceedings of 2007 International Conference on Computer Engineering and Systems, pp. 70–75, Cairo, Egypt, 2007. doi: 10.1109/icces.2007.4447028.
- [177] Shen X., Vikalo H.: ParticleCall: A particle filter for base calling in next-generation sequencing systems, BMC Bioinformatics, vol. 13, 160, 2012.doi: 10.1186/1471-2105-13-160.
- [178] Siederdissen zu C.H., Hofacker I.L., Stadler P.F.: Product grammars for alignment and folding, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 12, pp. 507–519, 2015. doi: 10.1109/tcbb.2014.2326155.
- [179] Silva da W.M.C., Andersen J.L., Holanda M.T., Walter M.E.M.T., Brigido M.M., Stadler P.F., Flamm C.: Exploring plant sesquiterpene diversity by generating chemical networks, Processes, vol. 7, p. 240, 2019.doi: 10.3390/pr7040240.
- [180] Singh P., Bandyopadhyay P., Bhattacharya S., Krishnamachari A., Sengupta S.: Ribos witch detection using profile hidden Markov models, BMC Bioinformatics, vol. 10, 325, 2009. doi: 10.1186/1471-2105-10-325.
- [181] Slisenko A.O.: Context-free grammars as a tool for describing polynomial-time subclasses of hard problems, Information Processing Letters, vol. 14, pp. 52–56,1982. doi: 10.1016/0020-0190(82)90086-2.
- [182] Smoly I., Carmel A., Shemer-Avni Y., Yeger-Lotem E., Ziv-Ukelson M.: Algorithms for regular tree grammar network search and their application to mining human-viral infection patterns, Journal of Computational Biology, vol. 23, pp. 165–179, 2016. doi: 10.1089/cmb.2015.0168.
- [183] S ̈oding J.: Protein homology detection by HMM-HMM comparison, Bioinformatics, vol. 21, pp. 951–960, 2005.
- [184] Srivastava P.K., Desai D.K., Nandi S., Lynn A.M.: HMM-Mod E-improved classification using profile hidden Markov models by optimising the discrimination thre shold and modifying emission probabilities with negative training sequences, BMC Bioinformatics, vol. 8, 104, 2007. doi: 10.1186/1471-2105-8-104.
- [185] St-Onge K., Thibault P., Hamel S., Major F.: Modeling RNA tertiary structure motifs by graph-grammars, Nucleic Adids Research, vol. 35, pp. 1726–1736,2007. doi: 10.1093/nar/gkm069.
- [186] Sun Y., Buhler J.: Designing patterns for profile HMM search, Bioinformatics, vol. 23, pp. e36–e43, 2006. doi: 10.1093/bioinformatics/btl323.
- [187] Sun Y., Buhler J.: Designing patterns and profiles for faster HMM search, IEEE/ACM Trans Computational Biology and Bioinformatics, vol. 6, pp. 232–243, 2009. doi: 10.1109/tcbb.2008.14.
- [188] Tamposis I.A., Tsirigos K.D., Theodoropoulou M.C., Kontou P.I., Bagos P.G.: Semi-supervised learning of hidden Markov models for biological sequence analysis, Bioinformatics, vol. 35, pp. 2208–2215, 2019.doi: 10.1093 /bioinformatics/bty910.
- [189] Tanaka E., Ikeda M., Ezure K.: Direct parsing, Pattern Recognition, vol. 19, pp. 315–323, 1986. doi: 10.1016/0031-3203(86)90057-9.
- [190] Temkin J.M., Gilder M.R.: Extraction of protein interaction information from unstructured text using a context-free grammar, Bioinformatics, vol. 19, pp. 2046–2053, 2003. doi: 10.1093/bioinformatics/btg279.
- [191] Terrapon N., Gascuel O., Marechal E., Brehelin L.: Fitting hidden Markov models of protein domains to a target species: application to Plasmodium falciparum, BMC Bioinformatics, vol. 13, p. 67, 2012. doi: 10.1186/1471-2105-13-67.
- [192] Thomason M.G., Gonzales R.C.: Syntactic recognition of imperfectly specified patterns, IEEE Transactions on Computers, vol. 24, pp. 93–95, 1975.doi: 10.1109/t-c.1975.224086.
- [193] Tsafnat G., Schaeffer J., Clayphan A., Iredell J.R., Partridge S.R., Coiera E.: Computational inference of grammars for larger-than-gene structures from anno-tated gene sequences, Bioinformatics, vol. 27, pp. 791–796, 2011. doi: 10.1093/bioinformatics/btr036.
- [194] Turakainen P.: On stochastic languages, Information and Control, vol. 12, pp. 304–313, 1968. doi: 10.1016/s0019-9958(68)90360-4.
- [195] Turan G.: On the complexity of graph grammars, Acta Cybernetica, vol. 6(3),pp. 271–280, 1983.
- [196] Uemura Y., Hasegawa A., Kobayashi S., Yokomori T.: Tree adjoining grammars for RNA structure prediction, Theoretical Computer Science, vol. 210, pp. 277–303, 1999. doi: 10.1016/s0304-3975(98)00090-5.
- [197] Vijayakumar J., Mathew L., Nagar A.K.: A new class of graph grammarsand modelling of certain biological structures,Symmetry, vol. 15, p. 349, 2023.doi: 10.3390/sym15020349.
- [198] Wang J., Keightley P.D., Johnson T.: MCALIGN2: faster, accurate global pair-wise alignment of non-coding DNA sequences based on explicit models of indelevolution,BMC Bioinformatics, vol. 7, 292, 2006. doi: 10.1186/1471-2105-7-292.
- [199] Weinberg Z., Ruzzo W.L.: Sequence-based heuristics for faster annotation ofnon-coding RNA families,Bioinformatics, vol. 22, pp. 35–39, 2006.
- [200] Wieczorek W., Unold O.: Use of a novel grammatical inference approach inclassification of amyloidogenic hexapeptides,Computational and MathematicalMethods in Medicine, vol. 2016, 1782732, 2016. doi: 10.1155/2016/1782732.
- [201] Wistrand M., Sonnhammer E.L.: Improving profile HMM discriminationby adapting transition probabilities,Journal of Molecular Biology, vol. 338,pp. 847–854, 2004. doi: 10.1016/j.jmb.2004.03.023.
- [202] Won K.J., Hamelryck T., Pr ̈ugel-Bennett A., Krogh A.: An evolutionary methodfor learning HMM structure: prediction of protein secondary structure,BMCBioinformatics, vol. 8, 357, 2007. doi: 10.1186/1471-2105-8-357.
- [203] Yandell M.D., Majoros W.H.: Genomics and natural language processing,Na-ture Reviews Genetics, vol. 3, pp. 601–610, 2002. doi: 10.1038/nrg861.
- [204] Yokomori T., Kobayashi S.: Learning local languages and their application toDNA sequence analysis,IEEE Transactions on Pattern Analysis and MachineIntelligence, vol. 20, pp. 1067–1079, 1998. doi: 10.1109/34.722617.
- [205] Yoon B.J.: Hidden Markov models and their applications in biological se-quence analysis,Current Genomics, vol. 10, pp. 402–415, 2009. doi: 10.2174/138920209789177575.
- [206] Yoon B.J., Vaidyanathan P.P.: Structural alignment of RNAs using profile-csHMMs and its application to RNA homology search: Overview and newresults,IEEE Transactions on Automatic Control, vol. 53, pp. 10–25, 2008.doi: 10.1109/TAC.2007.911322.
- [207] Zadeh L.A.: Note on fuzzy languages,Information Sciences, vol. 1, pp. 421–434,1969. doi: 10.1016/0020-0255(69)90025-5.
- [208] Zehnder T., Benner P., Vingron M.: Predicting enhancers in mammaliangenomes using supervised hidden Markov models,BMC Bioinformatics, vol. 20,157, 2019. doi: 10.1186/s12859-019-2708-6.
- [209] Zhang S., Borovok I., Aharonowitz Y., Sharan R., Bafna V.: A sequence-basedfiltering method for ncRNA identification and its application to searching forriboswitch elements,Bioinformatics, vol. 22, pp. e557–e565, 2006. doi: 10.1093/bioinformatics/btl232.
- [210] Zhao Y., Hayashida M., Akutsu T.: Integer programming-based method forgrammar-based tree compression and its application to pattern extraction ofglycan tree structures,BMC Bioinformatics, vol. 11, S4, 2010. doi: 10.1186/1471-2105-11-s11-s4.
- [211] Zhao Y., Hayashida M., Cao Y., Hwang J., Akutsu T.: Grammar-based com-pression approach to extraction of common rules among multiple trees of glycansand RNAs,BMC Bioinformatics, vol. 16, 128, 2015. doi: 10.1186/s12859-015-0558-4.
- [212] Zou L., Wang Z., Wang Y., Hu F.: Combined prediction of transmembranetopology and signal peptide ofβ-barrel proteins: Using a hidden Markovmodel and genetic algorithms,Computers in Biology and Medicine, vol. 40,pp. 621–628, 2010. doi: 10.1016/j.compbiomed.2010.04.006.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc9df5f7-3098-4576-8026-4ed7e4261783
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.