PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A survey on syntactic patternrecognition methodsin bioinformatics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Formal tools and models of syntactic pattern recognition which are used inbioinformatics are introduced and characterized in the paper. They include,among others: stochastic (string) grammars and automata, hidden Markovmodels, programmed grammars, attributed grammars, stochastic tree grammars, Tree Adjoining Grammars (TAGs), algebraic dynamic programming, NLC- and NCE-type graph grammars, and algebraic graph transformation systems. The survey of applications of these formal tools and models in bioinfor-matics is presented.
Wydawca
Czasopismo
Rocznik
Tom
Strony
5--42
Opis fizyczny
Bibliogr. 212 poz., rys., tab., wykr.
Twórcy
  • Jagiellonian University, Information Technology Systems Department, Cracow 30-348, ul. prof. St. Lojasiewicza 4, Poland
Bibliografia
  • [1] Abe N., Mamitsuka H.: Predicting protein secondary structure using stochastictree grammars,Machine Learning, vol. 29, pp. 275–301, 1997.
  • [2] Agarwal S., Vaz C., Bhattacharya A., Srinivasan A.: Prediction of novel precur-sor miRNAs using a context-sensitive hidden Markov model (CSHMM),BMCBioinformatics, vol. 11 (Suppl 1): S29, 2010. doi: 10.1186/1471-2105-11-s1-s29.
  • [3] Ahola V., Aittokallio T., Uusipaikka E., Vihinen M.: Efficient estimation ofemission probabilities in profile hidden Markov models,Bioinformatics, vol. 19,pp. 2359–2368, 2003. doi: 10.1093/bioinformatics/btg328.
  • [4] Alves J.M.P., de Oliveira A.L., Sandberg T.O.M., Moreno-Gallego J.L.,de Toledo M.A.F., de Moura E.M.M., Oliveira L.S.,et al.: GenSeed-HMM:A tool for progressive assembly using profile HMMs as seeds and its applicationin alpavirinae viral discovery from metagenomic data,Frontiers in Microbiology,vol. 7, 269, 2016. doi: 10.3389/fmicb.2016.00269.
  • [5] Anderson J.W.J., Tataru P., Staines J., Hein J., Lyngsø R.: Evolving stochasticcontext-free grammars for RNA secondary structure prediction,BMC Bioinfor-matics, vol. 13, 78, 2012. doi: 10.1186/1471-2105-13-78.
  • [6] Bagos P.G., Liakopoulos T.D., Hamodrakas S.J.: Evaluation of methods forpredicting the topology ofβ-barrel outer membrane proteins and a consensusprediction method,BMC Bioinformatics, vol. 6, 7, 2005. doi: 10.1186/1471-2105-6-7.
  • [7] Bagos P.G., Liakopoulos T.D., Spyropoulos I.C., Hamodrakas S.J.: A hiddenMarkov model method, capable of predicting and discriminatingβ-barrel outermembrane proteins,BMC Bioinformatics, vol. 5, 29, 2004. doi: 10.1186/1471-2105-5-29.
  • [8] Bagos P.G.,Liakopoulos T.D.,Spyropoulos I.C.,Hamodrakas S.J.:PRED-TMBB: a web server for predicting the topology ofβ-barrel outermembrane proteins,Nucleic Acids Research, vol. 32, pp. W400–W404, 2004.doi: 10.1093/nar/gkh417.
  • [9] Baldi P., Brunak S.:Bioinformatics: The Machine Learning Approach, MITPress, Cambridge, MA, 2001.
  • [10] Baldi P., Chauvin Y., Hunkapillar T., McClure M.: Hidden Markov models ofbiological primary sequence information,Proceedings of the National Academy ofSciences of the USA, vol. 91, pp. 1059–1063, 1994. doi: 10.1073/pnas.91.3.1059.
  • [11] Baum L.E., Petrie T.: Statistical inference for probabilistic functions of fi-nite state Markov chains,The Annals of Mathematical Statistics, vol. 37,pp. 1554–1563, 1966. doi: 10.1214/aoms/1177699147.
  • [12] Bellman R.:Dynamic Programming, Princeton University Press, Princeton, NJ,1957. doi: 10.2307/j.ctv1nxcw0f.
  • [13] Bentolila S.: A grammar describing ‘biological binding operators’ to modelgene regulation,Biochimie, vol. 78, pp. 335–350, 1996. doi: 10.1016/0300-9084(96)84766-3.
  • [14] Berkemer S.J., zu Siederdissen H ̈oner C., Stadler P.F.: Algebraic dynamic pro-gramming on trees,Algorithms, vol. 10, 135, 2017. doi: 10.3390/a10040135.
  • [15] Bernardes J.S., D ́avila A.M.R., Costa V.S., Zaverucha G.: Improving modelconstruction of profile HMMs for remote homology detection through struc-tural alignment,BMC Bioinformatics, vol. 8, 435, 2007. doi: 10.1186/1471-2105-8-435.
  • [16] Bhargava B.K., Fu K.: Stochastic tree systems for syntactic pattern recognition.In:Proceedings of Twelfth Annual Allerton Conference on Circuit and SystemTheory, pp. 278–287, Monticello, IL, 1974.
  • [17] Booth T.L., Thompson R.A.: Applying probability measures to abstract lan-guages,IEEE Trans Computers, vol. 22, pp. 442–450, 1973. doi: 10.1109/t-c.1973.223746.
  • [18] Brainerd W.S.: Tree generating regular systems,Information and Control,vol. 14, pp. 217–231, 1969. doi: 10.1016/s0019-9958(69)90065-5.
  • [19] Bralley P.: An introduction to molecular linguistics,BioScience, vol. 46,pp. 146–153, 1996. doi: 10.2307/1312817.
  • [20] Brandenburg F.J.: On the complexity of the membership problem of graphgrammars. In:Proceedings of the Workshop on Graphtheoretic Concepts in Com-puter Science, pp. 40–49, Osnabr ̈uck, Germany, 1983.
  • [21] Brejov ́a B., Brown D.G., Vinaˇr T.: The most probable annotation problem inHMMs and its application to bioinformatics,Journal of Computer and SystemSciences, vol. 73, pp. 1060–1077, 2007. doi: 10.1016/j.jcss.2007.03.011.
  • [22] Brendel V., Busse H.G.: Genome structure described by formal languages,Nu-cleic Acids Research, vol. 12, pp. 2561–2568, 1984.
  • [23] Brown M., Wilson C.: RNA pseudoknot modeling using intersections of stochas-tic context free grammars with applications to database search. In:Proceedingsof 1996 Pacific Symposium on Biocomputing, pp. 109–125, Hawaii, 1996.
  • [24] Brown M.P.: Small subunit ribosomal RNA modeling using stochastic context-free grammars. In:Proceedings of 8th Internatonal Conference on IntelligentSystems for Molecular Biology, pp. 57–66, San Diego, CA, USA, 2000.
  • [25] Bunke H., Sanfeliu A. (eds.):Syntactic and Structural Pattern Recognition –Theory and Applications, World Scientific, Singapore, 1990. doi: 10.1142/0580.
  • [26] Bystroff C., Krogh A.: Hidden Markov models for prediction of protein fea-tures. In: M. Zaki, C. Bystroff (eds.),Protein Structure Prediction. Meth-ods in Molecular Biology, pp. 173–198, Humana Press, New Jersey, 2008.doi: 10.1007/978-1-59745-574-97.
  • [27] Bystroff C., Shao Y., Yuan X.: Five hierarchical levels of sequence-structurecorrelation in proteins,Applied Bioinformatics, vol. 3, pp. 97–104, 2004.doi: 10.2165/00822942-200403020-00004.
  • [28] Cai L., Malmberg R., Wu Y.: Stochastic modeling of RNA pseudoknottedstructures: A grammatical approach,Bioinformatics, vol. 19, pp. i66–i73, 2003.doi: 10.1093/bioinformatics/btg1007.
  • [29] Cai Y., Lux M.W., Adam L., Peccoud J.: Modeling structure-function relation-ships in synthetic DNA sequences using attribute grammars,PLoS Computa-tional Biology, vol. 5, e1000529, 2009. doi: 10.1371/journal.pcbi.1000529.
  • [30] Chiang D., Joshi A.K., Searls D.B.: Grammatical representations of macro-molecular structure,Journal of Computational Biology, vol. 13, pp. 1077–1100,2006. doi: 10.1089/cmb.2006.13.1077.
  • [31] Collado-Vides J.: A transformational-grammar approach to the study of the reg-ulation of gene expression,Journal of Theoretical Biology, vol. 136, pp. 403–425,1989. doi: 10.1016/s0022-5193(89)80156-0.
  • [32] Collado-Vides J.: A syntactic representation of units of genetic information –A syntax of units of genetic information,Journal of Theoretical Biology,vol 148,pp. 401–429, 1991. doi: 10.1016/s0022-5193(05)80245-0.
  • [33] Collado-Vides J.: Grammatical model of the regulation of gene expression,Pro-ceedings of the National Academy of Sciences of the United States of America,vol. 89, pp. 9405–9409, 1992. doi: 10.1073/pnas.89.20.9405.
  • [34] Corn S.:Explicit definitions and linguistics dominoes. In:J.F. Hart,S. Takasu (eds.),Systems and Computer Science, University of Toronto Press,Toronto, 1967.
  • [35] Coste F.: Learning the language of biological sequences. In: J. Heinz, J.M. Sem-pere (eds.),Topics in Grammatical Inference, pp. 215–247, Springer, 2016.doi: 10.1007/978-3-662-48395-48.
  • [36] Datta S., Mukhopadhyay S.: A composite method based on formal grammarand DNA structural features in detecting human polymerase II promoter region,PLoS ONE, vol. 8, e54843, 2013. doi: 10.1371/journal.pone.0054843.
  • [37] Dill K.E., Lucas A., Hockenmaier J., Huang L., Chiang D., Joshi A.K.: Com-putational linguistics: A new tool for exploring biopolymer structures andstatistical mechanics,Polymer, vol. 48, pp. 4289–4300, 2007. doi: 10.1016/j.polymer.2007.05.018.
  • [38] Ding L., Samad A., Xue X., Huang X., Malmberg R.L., Cai L.: Stochastick-tree grammar and its application in biomolecular structure modeling,LectureNotes in Computer Science, vol. 8370, pp. 308–322, 2014. doi: 10.1007/978-3-319-04921-225.
  • [39] Do C.B., Mahabhashyam M.S., Brudno M., Batzoglou S.: ProbCons: Prob-abilistic consistency-based multiple sequence alignment,Genome Research,vol. 15, pp. 330–340, 2005. doi: 10.1101/gr.2821705.
  • [40] Do C.B., Woods D.A., Batzoglou S.: CONTRAfold: RNA secondary structureprediction without physics-based models,Bioinformatics, vol. 22, pp. e90–e98,2006. doi: 10.1093/bioinformatics/btl246.
  • [41] Dong S., Searls D.B.: Gene structure prediction by linguistic methods,Ge-nomics, vol. 23, pp. 540–551, 1994. doi: 10.1006/geno.1994.1541.
  • [42] Dowell R.D., Eddy S.R.: Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction,BMC Bioinformatics,vol. 5, 71, 2004. doi: 10.1186/1471-2105-5-71.
  • [43] Duda R.O., Hart P.E., Stork D.G.:Pattern Classification, Wiley, NewYork, 2001.
  • [44] Durbin R., Eddy S.R., Krogh A., Mitchison G.:Biological Sequence Analysis:Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press,Cambridge, UK, 2002.
  • [45] Dyrka W., Nebel J.C.: A stochastic context free grammar based frameworkfor analysis of protein sequences,BMC Bioinformatics, vol. 10, 323, 2009.doi: 10.1186/1471-2105-10-323.
  • [46] Dyrka W., Nebel J.C., Kotulska M.: Probabilistic grammatical model of proteinlanguage and its application to helix-helix contact site classification,Algorithmsfor Molecular Biology, vol. 8, 31, 2013.
  • [47] Eddy S.R.: Profile hidden Markov models,Bioinformatics, vol. 14, pp. 755–763,1998. doi: 10.1093/bioinformatics/14.9.755.
  • [48] Eddy S.R.: What is a hidden Markov model?,Nature Biotechnology, vol. 22,pp. 1315–1316, 2004. doi: 10.1038/nbt1004-1315.
  • [49] Eggers D., zu Siederdissen H ̈oner H.C., Stadler P.F.: Accuracy of RNA structureprediction depends on the pseudoknot grammar,Lecture Notes in ComputerScience, vol. 13523, pp. 20–31, 2022. doi: 10.1007/978-3-031-21175-13.
  • [50] Ehrig H., Ehrig K., Prange U., Taentzer G.:Fundamentals of Algebraic GraphTransformation, Springer, Berlin-Heidelberg, 2006.
  • [51] Ehrig H., Engels G., Kreowski H.J., Rozenberg G. (eds.):Handbook ofGraph Grammars and Computing by Graph Transformation, Vol. 2: Applica-tions, Languages and Tools, World Scientific, Singapore, 1999. doi: 10.1142/9789812815149.
  • [52] Ehrig H., Kreowski H.J.: Pushout-properties: An analysis of gluing con-structions for graphs,Mathematische Nachrichten, vol. 91, pp. 135–149, 1979.doi: 10.1002/mana.19790910111.
  • [53] Ehrig H., Pfender M., Schneider H.J.: Graph grammars: An algebraic approach.In:Proceedings of 14th Annual IEEE Symposium on Switching and AutomataTheory, pp. 167–180, 1973. doi: 10.1109/swat.1973.11.
  • [54] Flasi ́nski M.: Parsing of edNLC-graph grammars for scene analysis,PatternRecognition, vol. 21, pp. 623–629, 1988. doi: 10.1016/0031-3203(88)90034-9.
  • [55] Flasi ́nski M.: Distorted pattern analysis with the help of Node Label Controlledgraph languages,Pattern Recognition, vol. 23, pp. 765–774, 1990. doi: 10.1016/0031-3203(90)90099-7.
  • [56] Flasi ́nski M.: On the parsing of deterministic graph languages for syntacticpattern recognition,Pattern Recognition, vol. 26, pp. 1–16, 1993. doi: 10.1016/0031-3203(93)90083-9.
  • [57] Flasi ́nski M.: Use of graph grammars for the description of mechanical parts,Computer-Aided Design, vol. 27, pp. 403–433, 1995.doi: 10.1016 / 0010 -4485(94)00015-6.
  • [58] Flasi ́nski M.: Power properties of NLC graph grammars with a polynomial mem-bership problem,Theoretical Computer Science, vol. 201, pp. 189–231, 1998.doi: 10.1016/s0304-3975(97)00212-0.
  • [59] Flasi ́nski M.: Inference of parsable graph grammars for syntactic pattern recog-nition,Fundamenta Informaticae, vol. 80, pp. 379–413, 2007.
  • [60] Flasi ́nski M.:Introduction to Artificial Intelligence, Springer International,Switzerland, 2016. doi: 10.1007/978-3-319-40022-8.
  • [61] Flasi ́nski M.:Syntactic Pattern Recognition, World Scientific, New Jersey-London-Singapore, 2019.
  • [62] Flasi ́nski M., Jurek J.: Dynamically programmed automata for quasi contextsensitive languages as a tool for inference support in pattern recognition-basedreal-time control expert systems,Pattern Recognition, vol. 32, pp. 671–690, 1999.doi: 10.1016/s0031-3203(98)00115-0.
  • [63] Flasi ́nski M., Kotulski L.: On the use of graph grammars for the con-trol of a distributed software allocation,The Computer Journal, vol. 35,pp. A165–A175 1992.
  • [64] Flasi ́nski M., Lewicki G.: The convergent method of constructing polynomialdiscriminant functions for pattern recognition,Pattern Recognition, vol. 24,pp. 1009–1015, 1991. doi: 10.1016/0031-3203(91)90098-p.
  • [65] Flasi ́nski M., My ́sli ́nski S.: On the use of graph parsing for recognition ofisolated hand postures of Polish Sign Language,Pattern Recognition, vol. 43,pp. 2249–2264, 2010. doi: 10.1016/j.patcog.2010.01.004.
  • [66] Flasi ́nski M., Jurek J., Peszek T.: Multi-derivational parsing of vague lan-guages – the new paradigm of syntactic pattern recognition,IEEE Transac-tions on Pattern Analysis and Machine Intelligence, vol. 46, 2024. doi: 10.1109/tpami.2024.3367245.
  • [67] Fonzo de V., Aluffi-Pentini F., Parisi V.: Hidden Markov models in bioin-formatics,Current Bioinformatics, vol. 2, pp. 49–61, 2007.doi: 10.2174/157489307779314348.
  • [68] Fu K.S.: Stochastic tree languages and their application to picture processing.In: P.R. Krishnaiah (ed.),Multivariate Analysis V, North-Holland, Amster-dam, 1980.
  • [69] Fu K.S.: Stochastic automata, stochastic languages and pattern recognition,Journal of Cybernetics, vol. 1, pp. 31–49, 1971.
  • [70] Fu K.S.:Syntactic Pattern Recognition and Applications, Prentice Hall, Engle-wood Cliffs, 1982.
  • [71] Fu K.S., Huang T.: Stochastic grammars and languages,International Journalof Computer and Information Sciences, vol. 1, pp. 135–170, 1972. doi: 10.1007/bf00995736.
  • [72] Fu K.S., Li T.: On stochastic automata and languages,Information Sciences,vol. 1, pp. 403–419, 1969. doi: 10.1016/0020-0255(69)90024-3.
  • [73] Gallego A.J., L ́opez D., Calera-Rubio J.: Grammatical inference of directedacyclic graph languages with polynomial time complexity,Journal of Computerand System Sciences, vol. 95, pp. 19–34, 2018. doi: 10.1016/j.jcss.2017.12.002.
  • [74] G ́ecseg F., Steinby M.:Tree Automata, Akad ́emiai Kiad ́o, Budapest, 1984.
  • [75] Ghouila A., Florent I., Guerfali F.Z., Terrapon N., Laouini D., Yahia S.B.,Gascuel O.,et al.: Identification of Divergent Protein Domains by CombiningHMM-HMM Comparisons and Co-Occurrence Detection,PLoS ONE, vol. 9,e95275, 2014. doi: 10.1371/journal.pone.0095275.
  • [76] Giegerich R.:A declarative approach to the development of dynamic program-ming algorithms, applied to RNA folding, Tech. rep., Bielefeld University, Ger-many, 1998.
  • [77] Giegerich R.: Explaining and controlling ambiguity in dynamic programming,Lecture Notes in Computer Science, vol. 1848, pp. 46–59, 2000. doi: 10.1007/3-540-45123-46.
  • [78] Giegerich R.: A systematic approach to dynamic programming in bioinformatics,Bioinformatics, vol. 16(8), pp. 665–677, 2000. doi: 10.1093/bioinformatics/16.8.665.
  • [79] Giegerich R., Meyer C.: Algebraic Dynamic Programming,Lecture Notes inComputer Science, vol. 2422, pp. 349–364, 2002. doi: 10.1007/3-540-45719-424.
  • [80] Giegerich R., Touzet H.: Modeling dynamic programming problems over se-quences and trees with inverse coupled rewrite systems,Algorithms, vol. 7,pp. 62–144, 2014. doi: 10.3390/a7010062.
  • [81] Giegerich R., Meyer C., Steffen P.: Towards a discipline of dynamic program-ming,Lecture Notes in Informatics, vol. P-147, pp. 3–44, 2002.
  • [82] Giegerich R., Meyer C., Steffen P.: A discipline of dynamic programming oversequence data,Science of Computer Programming, vol. 51, pp. 215–263, 2004.doi: 10.1016/j.scico.2003.12.005.
  • [83] Golab T., Ledley R.S., Rotolo L.S.: FIDAC: Film input to digital automaticcomputer,Pattern Recognition, vol. 3, pp. 123–156, 1971. doi: 10.1016/0031-3203(71)90035-5.
  • [84] Gollery M. (ed.):Handbook of Hidden Markov Models in Bioinformatics, Chap-man and Hall / CRC, Boca Raton, FL, 2008. doi: 10.1201/9781420011807.
  • [85] Grenander U.:Syntax-controlled probabilities, Tech. rep., Brown University,Providence, R.I., 1967.
  • [86] Harmanci A.O., Sharma G., Mathews D.H.: Efficient pairwise RNA structureprediction using probabilistic alignment constraints inDynalign,BMC Bioin-formatics, vol. 8, 130, 2007.
  • [87] Haussler D., Krogh A., Mian I.S., Sj ̈oander K.: Protein modeling using hiddenMarkov models: analysis of globins. In:Proceedings of 26th Annual HawaiiInternational Conference on Systems Sciences, pp. 792–802, 1993.
  • [88] Head T.: Formal language theory and DNA: an analysis of the generative capac-ity of specific recombinant behaviors,Bulletin of Mathematical Biology, vol. 49,pp. 737–759, 1987. doi: 10.1016/s0092-8240(87)90018-8.
  • [89] Holmes I., Rubin G.M.: Pairwise RNA structure comparison with stochasticcontext-free grammars. In:Proceedings of 2002 Pacific Symposium on Biocom-puting, pp. 163–174, Hawaii, 2002.
  • [90] Horan K., Shelton C., Girke T.: Predicting conserved protein motifs with Sub-HMMs,BMC Bioinformatics, vol. 11, 205, 2010. doi: 10.1186/1471-2105-11-205.
  • [91] Hsu B.Y., Wong T.K.F., Hon W.K., Liu X., Lam T.W., Yiu S.M.: A LocalStructural Prediction Algorithm for RNA Triple Helix Structure. In: A. Ngom,E. Formenti, J.K. Hao, X.M. Zhao, T. van Laarhoven (eds.),Pattern Recognitionin Bioinformatics. PRIB 2013.Lecture Notes in Computer Science, vol. 7968,pp. 102–113, 2013. doi: 10.1007/978-3-642-39159-010.
  • [92] Huang T., Fu K.S.: Stochastic syntactic analysis for programmed grammars andsyntactic pattern recognition,Computer Graphics and Image Processing, vol. 1,pp. 257–283, 1972. doi: 10.1016/s0146-664x(72)80018-2.
  • [93] Janssen S., Giegerich R.: Faster computation of exact RNA shape probabilities,Bioinformatics, vol. 26, pp. 632–639, 2010. doi: 10.1093/bioinformatics/btq014.
  • [94] Janssens D., Rozenberg G.: On the structure of node-label-controlled graphlanguages,Information Sciences, vol. 20, pp. 191–216, 1980. doi: 10.1016/0020-0255(80)90038-9.
  • [95] Janssens D., Rozenberg G.: Restrictions, extensions, and variations of NLCgrammars,Information Sciences, vol. 20, pp. 217–244, 1980. doi: 10.1016/0020-0255(80)90039-0.
  • [96] Janssens D., Rozenberg G.: Graph grammars with neighbourhood-controlledembedding,Theoretical Computer Science, vol. 21, pp. 55–74, 1982.doi: 10.1016/0304-3975(82)90088-3.
  • [97] Janssens D., Rozenberg G., Verraedt R.: On sequential and parallel node-rewriting graph grammars,Computer Graphics and Image Processing, vol. 18,pp. 279–304, 1982. doi: 10.1016/0146-664x(82)90036-3.
  • [98] Johnson L.S., Eddy S.R., Portugaly L.: Hidden Markov model speed heuristicand iterative HMM search procedure,BMC Bioinformatics, vol. 11, 431, 2010.doi: 10.1186/1471-2105-11-431.
  • [99] Jonyer I., Holder L.B., Cook D.J.: MDL-based context-free graph grammar in-duction and applications,International Journal on Artificial Intelligence Tools,vol. 13, pp. 65–79, 2004. doi: 10.1142/s0218213004001429.
  • [100] Joshi A.K.: How much context-sensitivity is necessary for characterizing struc-tural descriptions – Tree Adjoining Grammars. In: D. Dowty,et al.(eds.),Natural Language Processing – Theoretical, Computational and PsychologicalPerspective, Cambridge University Press, New York, NY, 1985.
  • [101] Joshi A.K., Levy L.S., Takahashi M.: Tree adjunct grammars,Journal of Com-puter and System Sciences, vol. 10, pp. 136–163, 1975. doi: 10.1016/s0022-0000(75)80019-5.
  • [102] Joshi A.K., Schabes Y.: Tree adjoining grammars. In: G. Rozenberg, A. Salomaa(eds.),Handbook of Formal Languages – III, pp. 69–123, Springer, New York,NY, 1997. doi: 10.1007/978-3-642-59126-62.
  • [103] K ̈all L., Krogh A., Sonnhammer E.: An HMM posterior decoder for sequencefeature prediction that includes homology information,Bioinformatics, vol. 21,pp. i251–i257, 2005. doi: 10.1093/bioinformatics/bti1014.
  • [104] Karplus K., Barrett C., Hughey R.: Hidden Markov models for detecting remoteprotein homologies,Bioinformatics, vol. 14, pp. 846–856, 1998. doi: 10.1093/bioinformatics/14.10.846.
  • [105] Kato Y., Akutsu T., Seki H.: A grammatical approach to RNA-RNA interac-tion prediction,Pattern Recognition, vol. 42, pp. 531–538, 2009. doi: 10.1016/j.patcog.2008.08.004.
  • [106] Kato Y., Seki H., Kasami T.: Subclasses of tree adjoining grammars for RNAsecondary structure. In:Proceedings of 7th International Workshop on Tree Ad-joining Grammar and Related Formalisms, pp. 48–55, Vancouver, Canada, 2004.
  • [107] Kato Y., Seki H., Kasami T.: Stochastic multiple context-free grammar forRNA pseudoknot modeling. In:Proceedings of 8th International Workshop onTree Adjoining Grammar and Related Formalisms, pp. 57–64, Sydney, Australia,2006. doi: 10.3115/1654690.1654698.
  • [108] Kennedy P.J., Osborn T.R.: A model of gene expression and regulation in anartificial cellular organism,Complex Systems, vol. 13, pp. 33–59, 2001.
  • [109] Kirsch R.A.: Computer determination of the constituent structure of bio1ogicalimages,Computers and Biomedical Research, vol. 4, pp. 315–328, 1971.doi: 10.1016/0010-4809(71)90034-6.
  • [110] Knudsen B., Hein J.: RNA secondary structure prediction using stochas-tic context-free grammars and evolutionary history,Bioinformatics, vol. 15,pp. 446–454, 1999. doi: 10.1093/bioinformatics/15.6.446.
  • [111] Knudsen B., Hein J.: Pfold: RNA secondary structure prediction using stochas-tic context-free grammars,Nucleic Acids Research, vol. 31, pp. 3423–3428, 2003.
  • [112] Knudsen B., Miyamoto M.M.: Sequence alignments and pair hidden Markovmodels using evolutionary history,Journal of Molecular Biology, vol. 333,pp. 453–460, 2003. doi: 10.1016/j.jmb.2003.08.015.
  • [113] Knuth D.: Semantics of context-free languages,Mathematical Systems Theory,vol. 2, pp. 127–145, 1968. doi: 10.1007/bf01692511.
  • [114] Koutroumbas K., Theodoridis S.:Pattern Recognition, Academic Press,Boston, 2008.
  • [115] Krogh A., Brown M., Mian I.S., Sj ̈oander K., Haussler D.: Hidden Markovmodels in computational biology: Applications to protein modeling,Journal ofMolecular Biology, vol. 235, pp. 1501–1531, 1994.
  • [116] Krogh A., Larsson B., Heijne von G., Sonnhammer E.: Predicting transmem-brane protein topology with a hidden Markov model: application to completegenomes,Journal of Molecular Biology, vol. 305, pp. 567–580, 2001.
  • [117] Krogh A., Mian I.S., Haussler D.: A hidden Markov model that finds genes inE. coli DNA,Nucleic Acids Research, vol. 22, pp. 4768–4778, 1994.
  • [118] Kulp D., Haussler D., Reese M.G., Eeckman F.H.: A Generalized HiddenMarkov Model for the Recognition of Human Genes in DNA. In:Proceedings ofthe 4th International Conference on Intelligent Systems for Molecular Biology,pp. 134–142, St. Louis, MO, USA, 1996.
  • [119] Lasfar M., Bouden H.: A method of data mining using Hidden Markov Models(HMMs) for protein secondary structure prediction,Procedia Computer Science,vol. 127, pp. 42–51, 2018. doi: 10.1016/j.procs.2018.01.096.
  • [120] Ledley R.S.: High-speed automatic analysis of biomedical pictures,Science,vol 146, pp. 216–223, 1964. doi: 10.1126/science.146.3641.216.
  • [121] Ledley R.S., Rotolo L.S., Golab T.J., Jacobsen J.D., Ginsberg M.D., Wil-son J.B.: FIDAC: Film input to digital automatic computer and associ-ated syntax-directed pattern-recognition programming system. In: J.T. Tippet,D. Beckovitz, L. Clapp, C. Koester, A. Vanderburgh Jr. (eds.),Optical andElectro-optical Information Processing, pp. 591–613, MIT Press, Cambridge,MA, 1965.
  • [122] Lee H.C., Fu K.S.: A stochastic syntax analysis procedure and its application topattern classification,IEEE Transactions on Computers, vol. 21, pp. 660–666,1972. doi: 10.1109/t-c.1972.223571.
  • [123] Lefebvre F.: A grammar-based unification of several alignment and folding algo-rithms. In:Proceedings of 4th International Conference on Intelligent Systemsfor Molecular Biology, pp. 143–154, St. Louis, MO, USA, 1996.
  • [124] Leung S.,Mellish C.,Robertson D.:Basic Gene Grammars andDNA-ChartParser for language processing ofEscherichia colipromoter DNAsequences,Bioinformatics, vol. 17, pp. 226–236, 2001.
  • [125] Levenshtein V.I.: Binary codes capable of correcting deletions, insertions andreversals,Soviet Physics Doklady, vol. 10, pp. 707–710, 1966.
  • [126] Li J., Lee J., Liao L.: A new algorithm to train hidden Markov models forbiological sequences with partial labels,BMC Bioinformatics, vol. 22, 162, 2021.doi: 10.1186/s12859-021-04080-0.
  • [127] Li M., Cheng M., Ye Y., Hon W., Ting H., Lam T., Tang C.,et al.:Predicting RNA secondary structures: One-grammar-fits-all solution,LectureNotes in Computer Science, vol. 9096, pp. 211–222, 2015. doi: 10.1007/978-3-319-19048-818.
  • [128] Liang K.C., Wang X., Anastassiou D.: Bayesian Basecalling for DNA SequenceAnalysis Using Hidden Markov Models,IEEE/ACM Transactions on Compu-tational Biology and Bioinformatics, vol. 4(3), pp. 430–440, 2007. doi: 10.1109/tcbb.2007.1027.
  • [129] Liu L., Mori T., Zhao Y., Hayashida M., Akutsu T.: Euler string-basedcompression of tree-structured data and its application to analysis ofRNAs,Current Bioinformatics, vol. 13, pp. 25–33, 2018.doi: 10.2174 /1574893611666160608102231.
  • [130] Lobo D., Vico F.J., Dassow J.: Graph grammars with string-regulated rewriting,Theoretical Computer Science, vol. 412, pp. 6101–6111, 2011. doi: 10.1016/j.tcs.2011.07.004.
  • [131] Lottaz C., Iseli C., Jongeneel C.V., Bucher P.: Modeling sequencing er-rors by combining hidden Markov models,Bioinformatics, vol. 19 (Suppl. 2),pp. i103–i112, 2003. doi: 10.1093/bioinformatics/btg1067.
  • [132] Lu S.Y., Fu K.S.: Structure-preserved error-correcting tree automata for syn-tactic pattern recognition. In:1976 IEEE Conference on Decision and Controlincluding the 15th Symposium on Adaptive Processes, pp. 413–419, Clearwater,FL, USA, 1976. doi: 10.1109/cdc.1976.267768.
  • [133] Lyngsø R.B., Pedersen C.N.: RNA pseudoknot prediction in energy-based mod-els,Journal of Computational Biology, vol. 7, pp. 409–427, 2000. doi: 10.1089/106652700750050862.
  • [134] Majoros W.H., Pertea M., Delcher A.L., Salzberg S.L.: Efficient decoding algo-rithms for generalized hidden Markov model gene finders,BMC Bioinformatics,vol. 6, 16, 2005. doi: 10.1186/1471-2105-6-16.
  • [135] Mamitsuka H., Abe N.: Predicting location and structure of beta-sheet regionsusing stochastic tree grammars. In:Proceedings of 2nd International Confer-ence on Intelligent Systems for Molecular Biology, pp. 276–284, Stanford, CA,USA, 1994.
  • [136] Mamuye A., Merelli E., Tesei L.: A graph grammar for modelling RNA folding.In:Proceedings of 2nd Graphs as Models Workshop, pp. 31–41, Eindhoven, TheNetherlands, 2016. doi: 10.4204/eptcs.231.3.
  • [137] Marchand B., Will S., Berkemer S.J., Ponty Y., Bulteau L.: Automateddesign of dynamic programming schemes for RNA folding with pseudoknots.In:Proceedings of 22nd International Workshop on Algorithms in Bioinformat-ics, pp. 7:1–7:24, Potsdam, Germany, 2022. doi: 10.1186/s13015-023-00229-z.
  • [138] Markov A.A.: Essai d’une recherche statistique sur le texte du romanEu-gene Oneginillustrant la liaison des epreuve en chain,Bulletin de l’Acad ́emieImp ́eriale des Sciences de St-P ́etersbourg, vol. 7, pp. 153–162, 1913.
  • [139] Matsui H., Sato K., Sakakibara Y.: Pair stochastic tree adjoining grammarsfor aligning and predicting pseudoknot RNA structures,Bioinformatics, vol. 21,pp. 2611–2617, 2005. doi: 10.1093/bioinformatics/bti385.
  • [140] Menichelli C., Gascuel O., Br ́eh ́elin L.: Improving pairwise comparison of pro-tein sequences with domain co-occurrence,PLoS Computational Biology, vol. 14,e1005889, 2018. doi: 10.1371/journal.pcbi.1005889.
  • [141] Muggleton S., Bryant C., Srinivasan A., Whittaker A., Topp S., Rawlings C.:Are grammatical representations useful for learning from biological sequencedata? A case study,Journal of Computational Biology, vol. 8, pp. 493–522, 2001.
  • [142] Munch K., Krogh A.: Automatic generation of gene finders for eukaryoticspecies,BMC Bioinformatics, vol. 7, 263, 2006. doi: 10.1186/1471-2105-7-263.
  • [143] Nebel M.E., Weinberg F.: Algebraic and combinatorial properties of commonRNA pseudoknot classes with applications,Journal of Computational Biology,vol. 19, pp. 1134–1150, 2012. doi: 10.1089/cmb.2011.0094.
  • [144] Pachter L., Alexandersson M., Cawley S.: Applications of generalized pair hid-den Markov models to alignment and gene finding problems,Journal of Com-putational Biology, vol. 9, pp. 389–399, 2002. doi: 10.1089/10665270252935520.
  • [145] Pavlidis T.: Structural descriptions and graph grammars. In: S.K. Chang,K.S. Fu (eds.),Pictorial Information Systems, pp. 86–103, Springer, Berlin –Heidelberg – New York, 1980. doi: 10.1007/3-540-09757-04.
  • [146] Pedersen J.C., Hein J.:Gene finding with a hidden Markov model ofgenome structure and evolution,Bioinformatics, vol. 19, pp. 219–227, 2003.doi: 10.1093/bioinformatics/19.2.219.
  • [147] Peris P., L ́opez D., Campos M.: IgTM: An algorithm to predict transmem-brane domains and topology in proteins,BMC Bioinformatics, vol. 9, 367, 2008.doi: 10.1186/1471-2105-9-367.
  • [148] Pl ̈otz T., Fink G.A.: Pattern recognition methods for advanced stochastic pro-tein sequence analysis using HMMs,Pattern Recognition, vol. 39, pp. 2267–2280,2006. doi: 10.1016/j.patcog.2005.10.007.
  • [149] Ponty Y.:Ensemble Algorithms and Analytic Combinatorics in RNA Bioinfor-matics and Beyond, Universit ́e Paris-Saclay, 2020.
  • [150] Porter T., Hajibabaei M.: Profile hidden Markov model sequence analysis canhelp remove putative pseudogenes from DNA barcoding and metabarcodingdatasets,BMC Bioinformatics, vol. 22, 256, 2021. doi: 10.1186/s12859- 021-04180-x.
  • [151] Przytycka T., Srinivasan R., Rose G.D.: Recursive domains in proteins,ProteinScience, vol. 11, pp. 409–417, 2002. doi: 10.1110/ps.24701.
  • [152] Quadrini M., Tesei L., Merelli E.: An algebraic language for RNA pseudoknotscomparison,BMC Bioinformatics, vol. 20, 161, 2019. doi: 10.1186/s12859-019-2689-5.
  • [153] Rabin M.O.:Probabilistic automata,Information and Control, vol. 6,pp. 230–245, 1963. doi: 10.1016/s0019-9958(63)90290-0.
  • [154] Reese M.G., Kulp D., Tammana H., Haussler D.:Genie– gene finding inDrosophila melanogaster,Genome Research, vol. 10, pp. 529–538, 2000.
  • [155] Riechert M., zu Siederdissen H ̈oner C.H., Stadler P.F.: Algebraic dynamic pro-gramming for multiple context-free grammars,Theoretical Computer Science,vol. 639, pp. 91–109, 2016. doi: 10.1016/j.tcs.2016.05.032.
  • [156] Ripley B.D.:Pattern Recognition and Neural Networks, Cambridge UniversityPress, Cambridge, 2008.
  • [157] Rivas E., Eddy S.R.: The language of RNA: a formal grammar that includespseudoknots,Bioinformatics, vol. 16(4), pp. 334–340, 2000. doi: 10.1093/bioinformatics/16.4.334.
  • [158] Rivas E., Eddy S.R.: Noncoding RNA gene detection using comparativesequence analysis,BMC Bioinformatics, vol. 2, 8, 2001. doi: 10.1186/1471-2105-2-8.
  • [159] Rosenblueth D.A., Thieffry D., Huerta A.M., Salgado H., Collado-Vides J.:Syntactic recognition of regulatory regions inEscherichia coli,Computer Appli-cations in the Biosciences, vol. 12, pp. 415–422, 1996.
  • [160] Rosenkrantz D.J.: Programmed grammars and classes of formal languages,Journal of the Association for Computing Machinery, vol. 16, pp. 107–131, 1969.doi: 10.1145/321495.321504.
  • [161] Sakakibara Y.: Grammatical inference in bioinformatics,IEEE Transactionson Pattern Analysis and Machine Intelligence, vol. 27, pp. 1051–1062, 2005.doi: 10.1109/tpami.2005.140
  • [162] Sakakibara Y., Brown M., Hughey R., Mian I.S., Sj ̈olander K., Underwood R.C.,Haussler D.: Stochastic context-free grammars for tRNA modeling,NuclearAcids Research, vol. 22(23), pp. 5112–5120, 1994. doi: 10.1093/nar/22.23.5112.
  • [163] Salomaa A.: Probabilistic and weighted grammars,Information and Control,vol. 15, pp. 529–544, 1969. doi: 10.1016/s0019-9958(69)90554-3.
  • [164] Sanchez-Graillet O., Poesio M.: Negation of protein-protein interactions:analysis and extraction,Bioinformatics, vol. 23, pp. i424–i432, 2007.doi: 10.1093/bioinformatics/btm184.
  • [165] Sato K., Hamada M.: Recent trends in RNA informatics: a review of machinelearning and deep learning for RNA secondary structure prediction and RNAdrug discovery,Briefings in Bioinformatics, vol. 24, 2023. doi: 10.1093/bib/bbad186.
  • [166] Sauthoff G., Giegerich R.: Yield grammar analysis and product optimizationin a domain-specific language for dynamic programming,Science of ComputerProgramming, vol. 87, pp. 2–22, 2014. doi: 10.1016/j.scico.2013.09.011.
  • [167] Schalkoff R.:Pattern Recognition: Statistical, Structural and Neural Ap-proaches, Wiley, New York, 2005.
  • [168] Searls D.B.:The linguistics of DNA,American Scientist, vol. 80(6),pp. 579–591, 1992.
  • [169] Searls D.B.: The computational linguistics of biological sequences. In: L. Hunter(ed.),Artificial Intelligence and Molecular Biology, pp. 47–120, AAAI/MITPress, Menlo Park, CA, 1993.
  • [170] Searls D.B.: String Variable Grammar: a logic grammar formalism for DNAsequences,The Journal of Logic Programming, vol. 24, pp. 73–102, 1995.
  • [171] Searls D.B.: Linguistic approaches to biological sequences,Bioinformatics,vol. 13, pp. 333–344, 1997. doi: 10.1093/bioinformatics/13.4.333.
  • [172] Searls D.B.: Reading the book of life,Bioinformatics, vol. 17, pp. 579–580, 2001.doi: 10.1093/bioinformatics/17.7.579.
  • [173] Searls D.B.: The language of genes,Nature, vol. 420, pp. 211–217, 2002.doi: 10.1038/nature01255.
  • [174] Seesi S.A.,Rajasekaran S.,Ammar R.:Pseudoknot Identificationthrough Learning TAGRNA. In: M. Chetty, A. Ngom, S. Ahmad (eds.),PatternRecognition in Bioinformatics. PRIB 2008.Lecture Notes in Computer Science,vol. 5265, pp. 132–143, Springer, Berlin, Heidelberg, 2008. doi: 10.1007/978-3-540-88436-112.
  • [175] Seki H., Matsumura T., Fujii M., Kasami T.: On multiple context-free gram-mars,Theoretical Computer Science, vol. 88, pp. 191–229, 1991. doi: 10.1016/0304-3975(91)90374-b.
  • [176] Seoud R.A.A., Youssef A.B.M., Kadah Y.M.: Extraction of protein interactioninformation from unstructured text using a link grammar parser. In:Proceed-ings of 2007 International Conference on Computer Engineering and Systems,pp. 70–75, Cairo, Egypt, 2007. doi: 10.1109/icces.2007.4447028.
  • [177] Shen X., Vikalo H.: ParticleCall: A particle filter for base calling in next-generation sequencing systems,BMC Bioinformatics, vol. 13, 160, 2012.doi: 10.1186/1471-2105-13-160.
  • [178] Siederdissen zu C.H., Hofacker I.L., Stadler P.F.: Product grammars for align-ment and folding,IEEE/ACM Transactions on Computational Biology andBioinformatics, vol. 12, pp. 507–519, 2015. doi: 10.1109/tcbb.2014.2326155.
  • [179] Silva da W.M.C., Andersen J.L., Holanda M.T., Walter M.E.M.T.,Brigido M.M., Stadler P.F., Flamm C.: Exploring plant sesquiterpene di-versity by generating chemical networks,Processes, vol. 7, p. 240, 2019.doi: 10.3390/pr7040240.
  • [180] Singh P., Bandyopadhyay P., Bhattacharya S., Krishnamachari A., Sengupta S.:Riboswitch detection using profile hidden Markov models,BMC Bioinformatics,vol. 10, 325, 2009. doi: 10.1186/1471-2105-10-325.
  • [181] Slisenko A.O.: Context-free grammars as a tool for describing polynomial-timesubclasses of hard problems,Information Processing Letters, vol. 14, pp. 52–56,1982. doi: 10.1016/0020-0190(82)90086-2.
  • [182] Smoly I., Carmel A., Shemer-Avni Y., Yeger-Lotem E., Ziv-Ukelson M.: Algo-rithms for regular tree grammar network search and their application to min-ing human-viral infection patterns,Journal of Computational Biology, vol. 23,pp. 165–179, 2016. doi: 10.1089/cmb.2015.0168.
  • [183] S ̈oding J.: Protein homology detection by HMM-HMM comparison,Bioinfor-matics, vol. 21, pp. 951–960, 2005.
  • [184] Srivastava P.K., Desai D.K., Nandi S., Lynn A.M.: HMM-ModE-improved clas-sification using profile hidden Markov models by optimising the discriminationthreshold and modifying emission probabilities with negative training sequences,BMC Bioinformatics, vol. 8, 104, 2007. doi: 10.1186/1471-2105-8-104.
  • [185] St-Onge K., Thibault P., Hamel S., Major F.: Modeling RNA tertiary structuremotifs by graph-grammars,Nucleic Adids Research, vol. 35, pp. 1726–1736,2007. doi: 10.1093/nar/gkm069.
  • [186] Sun Y., Buhler J.: Designing patterns for profile HMM search,Bioinformatics,vol. 23, pp. e36–e43, 2006. doi: 10.1093/bioinformatics/btl323.
  • [187] Sun Y., Buhler J.:Designing patterns and profiles for faster HMMsearch,IEEE/ACM Trans Computational Biology and Bioinformatics, vol. 6,pp. 232–243, 2009. doi: 10.1109/tcbb.2008.14.
  • [188] Tamposis I.A., Tsirigos K.D., Theodoropoulou M.C., Kontou P.I., Bagos P.G.:Semi-supervised learning of hidden Markov models for biological sequenceanalysis,Bioinformatics, vol. 35, pp. 2208–2215, 2019.doi: 10.1093 /bioinformatics/bty910.
  • [189] Tanaka E., Ikeda M., Ezure K.: Direct parsing,Pattern Recognition, vol. 19,pp. 315–323, 1986. doi: 10.1016/0031-3203(86)90057-9.
  • [190] Temkin J.M., Gilder M.R.: Extraction of protein interaction informationfrom unstructured text using a context-free grammar,Bioinformatics, vol. 19,pp. 2046–2053, 2003. doi: 10.1093/bioinformatics/btg279.
  • [191] Terrapon N., Gascuel O., Mar ́echal E., Br ́eh ́elin L.: Fitting hidden Markov mod-els of protein domains to a target species: application toPlasmodium falciparum,BMC Bioinformatics, vol. 13, p. 67, 2012. doi: 10.1186/1471-2105-13-67.
  • [192] Thomason M.G., Gonzales R.C.: Syntactic recognition of imperfectly spec-ified patterns,IEEE Transactions on Computers, vol. 24, pp. 93–95, 1975.doi: 10.1109/t-c.1975.224086.
  • [193] Tsafnat G., Schaeffer J., Clayphan A., Iredell J.R., Partridge S.R., Coiera E.:Computational inference of grammars for larger-than-gene structures from anno-tated gene sequences,Bioinformatics, vol. 27, pp. 791–796, 2011. doi: 10.1093/bioinformatics/btr036.
  • [194] Turakainen P.: On stochastic languages,Information and Control, vol. 12,pp. 304–313, 1968. doi: 10.1016/s0019-9958(68)90360-4.
  • [195] Tur ́an G.: On the complexity of graph grammars,Acta Cybernetica, vol. 6(3),pp. 271–280, 1983.
  • [196] Uemura Y., Hasegawa A., Kobayashi S., Yokomori T.: Tree adjoining gram-mars for RNA structure prediction,Theoretical Computer Science, vol. 210,pp. 277–303, 1999. doi: 10.1016/s0304-3975(98)00090-5.
  • [197] Vijayakumar J., Mathew L., Nagar A.K.: A new class of graph grammarsand modelling of certain biological structures,Symmetry, vol. 15, p. 349, 2023.doi: 10.3390/sym15020349.
  • [198] Wang J., Keightley P.D., Johnson T.: MCALIGN2: faster, accurate global pair-wise alignment of non-coding DNA sequences based on explicit models of indelevolution,BMC Bioinformatics, vol. 7, 292, 2006. doi: 10.1186/1471-2105-7-292.
  • [199] Weinberg Z., Ruzzo W.L.: Sequence-based heuristics for faster annotation ofnon-coding RNA families,Bioinformatics, vol. 22, pp. 35–39, 2006.
  • [200] Wieczorek W., Unold O.: Use of a novel grammatical inference approach inclassification of amyloidogenic hexapeptides,Computational and MathematicalMethods in Medicine, vol. 2016, 1782732, 2016. doi: 10.1155/2016/1782732.
  • [201] Wistrand M., Sonnhammer E.L.: Improving profile HMM discriminationby adapting transition probabilities,Journal of Molecular Biology, vol. 338,pp. 847–854, 2004. doi: 10.1016/j.jmb.2004.03.023.
  • [202] Won K.J., Hamelryck T., Pr ̈ugel-Bennett A., Krogh A.: An evolutionary methodfor learning HMM structure: prediction of protein secondary structure,BMCBioinformatics, vol. 8, 357, 2007. doi: 10.1186/1471-2105-8-357.
  • [203] Yandell M.D., Majoros W.H.: Genomics and natural language processing,Na-ture Reviews Genetics, vol. 3, pp. 601–610, 2002. doi: 10.1038/nrg861.
  • [204] Yokomori T., Kobayashi S.: Learning local languages and their application toDNA sequence analysis,IEEE Transactions on Pattern Analysis and MachineIntelligence, vol. 20, pp. 1067–1079, 1998. doi: 10.1109/34.722617.
  • [205] Yoon B.J.: Hidden Markov models and their applications in biological se-quence analysis,Current Genomics, vol. 10, pp. 402–415, 2009. doi: 10.2174/138920209789177575.
  • [206] Yoon B.J., Vaidyanathan P.P.: Structural alignment of RNAs using profile-csHMMs and its application to RNA homology search: Overview and newresults,IEEE Transactions on Automatic Control, vol. 53, pp. 10–25, 2008.doi: 10.1109/TAC.2007.911322.
  • [207] Zadeh L.A.: Note on fuzzy languages,Information Sciences, vol. 1, pp. 421–434,1969. doi: 10.1016/0020-0255(69)90025-5.
  • [208] Zehnder T., Benner P., Vingron M.: Predicting enhancers in mammaliangenomes using supervised hidden Markov models,BMC Bioinformatics, vol. 20,157, 2019. doi: 10.1186/s12859-019-2708-6.
  • [209] Zhang S., Borovok I., Aharonowitz Y., Sharan R., Bafna V.: A sequence-basedfiltering method for ncRNA identification and its application to searching forriboswitch elements,Bioinformatics, vol. 22, pp. e557–e565, 2006. doi: 10.1093/bioinformatics/btl232.
  • [210] Zhao Y., Hayashida M., Akutsu T.: Integer programming-based method forgrammar-based tree compression and its application to pattern extraction ofglycan tree structures,BMC Bioinformatics, vol. 11, S4, 2010. doi: 10.1186/1471-2105-11-s11-s4.
  • [211] Zhao Y., Hayashida M., Cao Y., Hwang J., Akutsu T.: Grammar-based com-pression approach to extraction of common rules among multiple trees of glycansand RNAs,BMC Bioinformatics, vol. 16, 128, 2015. doi: 10.1186/s12859-015-0558-4.
  • [212] Zou L., Wang Z., Wang Y., Hu F.: Combined prediction of transmembranetopology and signal peptide ofβ-barrel proteins: Using a hidden Markovmodel and genetic algorithms,Computers in Biology and Medicine, vol. 40,pp. 621–628, 2010. doi: 10.1016/j.compbiomed.2010.04.006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc9df5f7-3098-4576-8026-4ed7e4261783
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.