Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper Atlantic blue marlin (ABM) optimization algorithm, Boops optimization (BO) algorithm, Chironex fleckeri search optimization (CSO) algorithm, general practitioner-sick person (PS) optimization algorithm are applied for solving factual power loss reduction problem. Natural actions of Atlantic blue marlin are emulated to design the Atlantic blue marlin (ABM) optimization algorithm and populace in the examination space is capriciously stimulated. Boops optimization (BO) algorithm is designed by imitating the stalking physiognomies of Boops. CSO is based on the drive and search behavior of Chironex fleckeri. A general practitioner will treat a sick person with various procedures which have been imitated to model the Projected PS algorithm. Inoculation, medicine and operation are the procedures considered in the PS algorithm. Atlantic blue marlin (ABM) optimization algorithm, Boops optimization (BO) algorithm, Chironex fleckeri search optimization (CSO) algorithm, general practitioner-sick person (PS) optimization algorithm validated in IEEE 57, 300 systems and 220 KV network. Factual power loss lessening, power divergence restraining, and power constancy index amplification have been attained.
Słowa kluczowe
Rocznik
Tom
Strony
78--88
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
- Prasad V. Potluri Siddhartha Institute of Technology, Chalasani Nagar, Kanuru, Vijayawada, Andhra Pradesh, 520007, India
Bibliografia
- [1] C. P. Goodyear et al., “Vertical habitat use of Atlantic blue marlin Makairanigricans: interaction with pelagic longline gear,” Mar. Ecol. Prog. Ser., vol. 365, pp. 233–245, 2008. Doi: 10.3354/meps07505
- [2] A. T. Dahel, M. Rachedi, M. Tahri, N. Benchikh, A. Diaf, and A. B. Djebar, “Fisheries status of the bogue Boops boops (Linnaeus, 1758) in Algerian East Coast (Western Mediterranean Sea),” Egypt.J. Aquat. Biol. Fish., vol. 23, no. 4, pp. 577–589,2019. Doi: 10.3354/meps07505
- [3] M. Piontek et al., “The pathology of Chironex fleckeri venom and known biological mechanisms,” Toxicon X, vol. 6, no. 100026, p. 100026, 2020. Doi: 10.1016/j.toxcx.2020.100026
- [4] R. A. Damarell, D. D. Morgan, and J. J. Tieman, “General practitioner strategies for managing patients with multimorbidity: a systematic review and thematic synthesis of qualitative research,” BMC Fam. Pract., vol. 21, no. 1, 2020. Doi: 10.1186/s12875-020-01197-8
- [5] K. Lenin, ”Quasi Opposition-Based Quantum Pieris Rapae and Parametric Curve Search Optimization for Real Power Loss Reduction and Stability Enhancement,” IEEE Transactions on Industry Applications, vol. 59, no. 3, pp. 3077-3085, May-June 2023 Doi: 10.1109/TIA.2023.3249147.
- [6] K. Nagarajan, “Multi-objective optimal reactive power dispatch using Levy InteriorSearch Algorithm,”Int. J. Electr. Eng. Inform., vol. 12, no. 3, pp. 547–570, 2020 DOI:10.15676/ijeei.2020.12.3.8
- [7] R. Ng Shin Mei, M. H. Sulaiman, Z. Mustaffa, and H. Daniyal, “Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique,” Appl. Soft Comput., vol. 59, pp. 210–222, 2017. Doi: 10.1016/j.asoc.2017.05.057
- [8] K. Nuaekaew, P. Artrit, N. Pholdee, and S. Bureerat, “Optimal reactive power dispatch problem using a two-archive multi-objective grey wolf optimizer,” Expert Syst. Appl., vol. 87, pp. 79–89, 2017. Doi: 10.1016/j.eswa.2017.06.009
- [9] A. H. Khazali and M. Kalantar, “Optimal reactive power dispatch based on harmony search algorithm,” Int. J. Electr. Power Energy Syst., vol. 33, no. 3, pp. 684–692, 2011 Doi: 10.1016/j.ijepes.2010.11.018
- [10] C. Gonggui, L. Lilan, G. Yanyan, H. Shanwai,“Multi-objective enhanced PSO algorithm for optimizing power losses and voltage deviation in power systems, “COMPEL, Vol. 35 No. 1, pp. 350-372, 2016. Doi: 10.1108/compel-02-2015-0030
- [11] Anil Kumar, Aruna Jeyanthy, Devaraj, “Hybrid CAC-DE in optimal reactive power dispatch (ORPD) for renewable energy cost reduction,” Sustainable Computing: Informatics and Systems, Volume 35, 2022, 100688, Doi: 10.1016/j.suscom.2022.100688.
- [12] Abd-El Wahab, Kamel , Hassan, Mosaad, AbdulFattah,“Optimal Reactive Power Dispatch Using a Chaotic Turbulent Flow of Water-Based Optimization Algorithm,” Mathematics. 2022; 10(3):346. Doi: 10.3390/math10030346
- [13] The IEEE 57-Bus Test System [online], available at http://www.ee.washington.edu/research/pstca/pf57/pg_tca57bus.htm.
- [14] M. T. Mouwafi, A. A. A. El-Ela, R. A. El-Sehiemy, and W. K. Al-Zahar, “Techno-economic based static and dynamic transmission network expansion planning using improved binary bat algorithm,” Alex. Eng. J., vol. 61, no. 2, pp. 1383–1401, 2022. Doi: 10.1016/j.aej.2021.06.021.
- [15] A. A. El-Ela, M. Mouwafi, and W. Al-Zahar, “Optimal transmission system expansion is planning via binary bat algorithm,” in 2019 21st Int. Mid. East Power Sys. Conf, (MEPCON), 2019. Doi: 10.1109/MEPCON47431.2019.9008022.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc9dd91e-0583-4305-8611-b0d05f8636ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.