Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The energy potential of municipal solid waste landfills receded into the background compared to more traditional sources of energy. Such possibilities as landfill degassing, as well as extraction of thermal energy from the depths of landfills, were little-researched, due to being kind of risky phenomena for their wide application. Currently, the energy system of Ukraine is under the risk as due to the military actions – objects of critical energy infrastructure have become the easy targets for the enemy. About 53 mln m3 of household waste were generated in Ukraine in 2021. Over 10 mln tons were buried at 6000 of landfills, total area of which accounts for 9000 hectares. The energy potential of these waste was used ineffective. Only 28 landfills of total have the degassing system established. The case of using landfill gas as an energy source lies between such challenges: the increasing amount of MSW, proper waste management and the energy crisis in Ukraine caused by the shellings. Landfill spreading throughout the country makes it possible to operate safely and reduce the risk of bringing any significant damage to such infrastructure. The study was focused on the Sumy City landfill, the potential of which is estimated as 36397 m3/t of solid waste. The degassing system was designed based on the methodology of State building regulations of Ukraine. Analysis of the efficiency of the system was done, including the potential energy output as a result of operation of such a system which comes paramount in dealing with the imperative of soaring amount of MSW, reducing greenhouse gas emissions and producing green, cheap energy. The negative impact of MSW landfills on the environment is beyond all dispute so it is crucial that their potential be used at full capacity.
Czasopismo
Rocznik
Tom
Strony
258--270
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
- Department of Ecology and Environmental Protection Technologies, Sumy State University, Kharkivs’ka St, 116, Sumy, Sumy Oblast, 40000, Ukraine
- Department of Biosystems Engineering, Poznan University of Life Sciences, ul. Wojska Polskiego 28, 60-637 Poznań, Poland
autor
- Department of Ecology and Environmental Protection Technologies, Sumy State University, Kharkivs’ka St, 116, Sumy, Sumy Oblast, 40000, Ukraine
autor
- Department of Ecology and Environmental Protection Technologies, Sumy State University, Kharkivs’ka St, 116, Sumy, Sumy Oblast, 40000, Ukraine
autor
- Department of Environmental Engineering and Geodesy, University of Life Sciences in Lublin, ul. Akademicka 13, 20-950 Lublin, Poland
Bibliografia
- 1. Abbas Z., Utomo S., Budiyono B. 2020. Analysis of optimum garbage heaps ageon recovery of landfills dominated by organic solid waste. Journal of Ecological Engineering, 21(8), 91–98. doi: 10.12911/22998993/127092.
- 2. About the National renewable energy action plan for the period until 2020. Order of the Cabinet of Ministers of Ukraine; Measures from 01.10.2014 No 902. Available online: https://zakon.rada.gov.ua/ laws/show/902-2014-%D1%80#Text (accessed on 22 December 2023).
- 3. Cecchi F., Pavan P., Musacco A., Mata-Alvarez J., Vallini G. 1993. Digesting the organic fraction of municipal solid waste: moving from mesophilic (37 °C) to thermophilic (55 °C) conditions. Waste Manage. Res., 11, 403–414. doi: 10.1006/ wmre.1993.1042.
- 4. DBN B.2.4-2-2005. 2005. Design. Landfills for solid household waste. Basic design provisions. 36.
- 5. DeWalle F.B., Chian E.S.K., Hammerberg E. 1978. Gas production from solid waste in landfills. Journal of the Environmental Engineering Division, 104(3), 415–432. doi: 10.1061/JEEGAV.0000767.
- 6. Eberling B. 2001. Environmental controls of the seasonal variation in oxygen uptake in sulf idic tailings deposited in a permafrost-affected area. Water Resour Res., 37(1), 99–107. doi: 10.1029/2000WR900259.
- 7. Energy Strategy of Ukraine for the period up to 2050. Order of the Cabinet of Ministers of Ukraine, No. 373, April 21, 2023. Available online: https://zakon. rada.gov.ua/laws/show/373-2023-%D1%80#Text (accessed on 22 December 2023).
- 8. Eurostat. 2023. Greenhouse gas emissions from waste disposal. 2023. Available online: https:// ec.europa.eu/eurostat/web/products-datasets/-/ env_air_gge (accessed on 27 December 2023).
- 9. George V.B., de Medeiros J.L., Araújo O.D.Q.F., Mikulčić H., Duić N. 2021. A zero–emission sustainable landfill-gas-to-wire oxyfuel process: Bioenergy with carbon capture and sequestration. Renewable and Sustainable Energy Reviews, 138, 110686. doi: 10.1016/j.rser.2020.110686.
- 10. Ghosh A., Kumar S., Das J. 2023. Impact of leachate and landfill gas on the ecosystem and health: Research trends and the way forward towards sustainability. Journal of Environmental Management, 336, 117708. doi: 10.1016/J.JENVMAN.2023.117708.
- 11. Grillo R.J. 2014. Energy recycling – landfill waste heat generation and recovery. Current Sustainable. Renewable Energy Reports, 1(4), 150–156. doi: 10.1007/S40518-014-0017-2/FIGURES/1.
- 12. Guidance on Landfill Gas Flaring. 2002. Environment Agency. Available online: https://www.sepa. org.uk/media/28988/guidance-on-landfill-gas-flaring.pdf (accessed on 18 December 2023).
- 13. Hanson J.L., Onnem N.T., Yesiller N., Kopp K.B. 2022. A review of heat generation and assessment of vertical extraction systems. Renewable and Sustainable Energy Reviews. 167, 112835. doi: 10.1016/j. rser.2022.112835.
- 14. Hartz K.E., Klink R.E., Ham R.K. 1982. Temperature Effects: Methane generation from landfill samples. Journal of the Environmental Engineering Division, 108(4), 629–638. doi: 10.1061/JEEGAV.0001314.
- 15. Imamovic D., Serdarevic A. 2023. Landfill gaslandfill degassing system and methods of using landfill gas at Sarajevo landfill. Coupled Systems Mechanics, 12(6), 531–537. doi: 10.12989/ csm.2023.12.6.531
- 16. Kashyap R.K. 2016. Opportunities & Challenges in capturing landfill gas from an active and unscientifically managed land fill site – A Case Study. Procedia Environmental Sciences, 35, 348–367. doi: 10.1016/j.proenv.2016.07.015.
- 17. Kasuwa P.F. 2022. The Russia-Ukraine conflict: economic consequences on europe and the world. Nowa Polityka Wschod, 3, 63–82. doi: 10.15804/ npw20223403.
- 18. Krzemińska D., Neczaj E., Borowski G. 2015. Advanced oxidation processes for food industrial wastewater decontamination. Journal of Ecological Engineering, 16(2), 61–71. doi: 10.12911/22998993/1858.
- 19. Korbut M., Malovanyy M., Boyko R., Masikevych A. 2023. Determination of the sanitary protection zone of municipal waste landfill based on evaluation of the environmental hazards: Case study of the Zhytomyr territorial community, Ukraine. Heliyon, 9(12), e22347. doi: 10.1016/J.HELIYON.2023.E22347
- 20. Kuzior A., Lobanova A., Kalashnikova L. 2021. Green Energy in Ukraine: State, Public Demands, and Trends. Energies, 14, 7745. doi: 10.3390/ EN14227745.
- 21. ATSDR. Agency for Toxic Substances and Disease Registry. 2001. Landfill Gas Control Measures. Available online: https://www.atsdr.cdc.gov/hac/landfill/ html/ch5.html (accessed on 19 January 2023).
- 22. Lefebvre R., Hockley D., Smolensky J., Geélinas P. 2001. Multiphase transfer processes in waste rock piles producing acid mine drainage: 1: Conceptual model and system characterization. Journal of Contaminant Hydrology, 52(1–4), 137–164. doi: 10.1016/S0169-7722(01)00156-5.
- 23. Marks S., Dach J., Fernandez Morales F., Mazurkiewicz J., Pochwatka P., Gierz L. 2020. New Trends in substrates and biogas systems in poland. Journal of Ecological Engineering, 21, 19–25. doi: 10.12911/22998993/119528.
- 24. Masalegooyan Z., Piadeh F., Behzadian K. 2022. A comprehensive framework for risk probability assessment of landfill fire incidents using fuzzy fault tree analysis. Process Safety and Environmental Protection, 163, 679–693. doi: 10.1016/J. PSEP.2022.05.064.
- 25. Mata-Alvarez, J., Martinez-Viturtia, A. 1986. Laboratory simulation of municipal solid waste fermentation with leachate recycle. J. Chem. Technol. Biotechnol., 36(12), 547–556. doi: 10.1002/ jctb.280361202.
- 26. Matveev Y.B., Geletukha H.G. 2019. Prospects of energy utilization of domestic solid waste in Ukraine. Analytical note of Bioenergy Association of Ukraine. No. 22. 2019. 48. Available online: https://uabio.org/ wp-content/uploads/2020/01/position-paper-uabio22-en.pdf (accessed on 1 December 2023).
- 27. Order No. 435. 2010. On the approval of the Rules for the operation of household waste landfills of the Ministry of Housing and Municipalities on Dec 1, 2010 No. 435. Available online: https://zakon.rada.gov.ua/laws/ show/z1307-10#Text (accessed on 1 December 2023).
- 28. Ma J., Gu Y., Liu L., Zhang Y., Wei M., Jiang A., Liu X., He C. 2023. Study on the effect of landf ill gas on aerobic municipal solid waste degradation: Lab-scale model and tests. Science of the Total Environment, 869, 161875. doi: 10.1016/J. SCITOTENV.2023.161875.
- 29. Malmir T., Héroux M., Lagos D., Eicker U. 2023. Assessment of landfill gas storage and application regarding energy management: A case study in the province of Quebec, Canada. Waste Management, 171, 155–162. doi: 10.1016/J. WASMAN.2023.08.029.
- 30. Melnyk O., Vaskina I. 2022. Climate perspectives for post-war Ukraine: article. UA: Ukraine Analytica, 3(29), 8–16.
- 31. NCRECS - The National Commission on state regulation in the field of energy and communal services. 2018. Report on the results of the activities of the National Commission, which carries out state regulation in the spheres of energy and communal services in 2018. Sumy. Available online: https:// data.gov.ua/dataset/ae3bf3ff-4286-4dd3-a23e13cdf7dacc02 (accessed on 19 December 2023).
- 32. Nová K.J., Král J., Kolář J. 2023. Methods of landfill gas management. The Czech Republic case study. Environment Protection Engineering, 49(1), 73-85. doi: 10.37190/epe230105.
- 33. Papagiannis F., Gazzola P., Burak O., Pokutsa I. 2021. A European household waste management approach: Intelligently clean Ukraine. Journal of Environmental Management, 294, 113015. doi: 10.1016/J.JENVMAN.2021.113015.
- 34. Pirt S.J. 1978. Aerobic and anaerobic microbial digestion in waste reclamation. J Appl. Chemistry and Biotechnology, 28, 232–236.
- 35. Rees J.F. 1980a. Optimization of methane production and refuse decomposition in landfills by temperature control, J. Chem. Technol. Biotechnol., Society of Chemical Industry, 30(8), 458–465. doi: 10.1002/jctb.503300158.
- 36. Rees J.F. 1980b. The fate of carbon compounds in the landfill disposal of organic matter, J. Chem. Tech. Biotechnol., Society of Chemical Industry, 30(4), 161–175. doi: 10.1002/jctb.503300121.
- 37. Regional waste management plan of Sumy Oblast by 2030. 2022. Sumy regional state administration. [Автор]419-OD dated 16.12.2022. Available online: https://sm.gov.ua/images/docs/dostup/2022/419_22_1. pdf (accessed on 19 December 2023).
- 38. Report on the state of the natural environment in the Sumy region. 2023. Sumy regional state administration. Department of Environmental Protection and Energy. Sumy, 218.
- 39. Rettenberger G. 2018. Utilization of Landfill Gas and Safety Measures. Solid Waste Landfilling, 463476. doi: 10.1016/B978-0-12-407721-8.00023-1.
- 40. Rowe R.K., Islam M.Z. 2009. Impact of landfill liner time–temperature history on the service life of HDPE geomembranes. Waste Management, 29(10), 26892699. doi: 10.1016/J.WASMAN.2009.05.010.
- 41. Shkileva, A. 2021. Implementation of a Degassing System at the MSW Landfill. Civil Engineering Journal, 7(6), 1008–1014. doi: 10.28991/ cej-2021-03091706.
- 42. Stege A.G. User’s Manual Ukraine Landfill Gas Model. SCS Engineers Reston, 2009. 34 p. Available online: https://www.globalmethane.org/documents/ models/pdfs/UsersManual_UkraineLFGModel.pdf (accessed on 19 December 2023)
- 43. Zaman B., Samadikun B.D., Hardyanti N., Purwono P. 2021. Waste to Energy: Calorific Improvement of Municipal Solid Waste through Biodrying. Environmental and Climate Technologies, 25(1), 176–187. doi: https://doi.org/10.2478/rtuect-2021-0012
- 44. SFOE. 2004. Swiss Federal Office of Energy. Calorific value of energy resources. Available online: http://www.energie-schweiz.ch/internet/00735/index.html?lang=en (accessed on 19 December 2023).
- 45. Tchobanoglous G., Theisen H., Vigil S.A. 1993. Integrated solid waste management: Engineering principles and management issues, McGraw-Hill, New York.
- 46. Un C. 2023. A Sustainable approach to the conversion of waste into energy: landfill gas-to-fuel technology. Sustainability, 15(20), 14782. doi: 10.3390/ SU152014782.
- 47. Wang Q., Xie H., Peng,Y., Mohammad,A., Singh D.N. 2023. VOCs emission from a final landfill cover system induced by ground surface air temperature and barometric pressure fluctuation. Environmental Pollution, 336, 122391. doi: 10.1016/J. ENVPOL.2023.122391.
- 48. Yesiller N., Hanson J.L., Kopp K.B., Yee E.H. 2015. Assessing approaches for extraction of heat from MSW landfills. Proceedings Sardinia 2015, fifteenth international waste management and landfill symposium. Italy: CISA 2015, 1–9.
- 49. Yeşiller N., Hanson J.L., Kopp K.B., Yee E.H. 2016. Heat management strategies for MSW landfills. Waste Management, 56, 246–254. doi: 10.1016/J. WASMAN.2016.07.011.
- 50. Yu L., Batlle F., Carrera J., Lloret A. 2009. Gas flow to a vertical gas extraction well in deformable MSW landfills. Journal of Hazardous Materials, 168(2–3), 1404–1416 doi: 10.1016/j.jhazmat.2009.03.045.
- 51. Zhang C., Xu T., Feng H., Chen S. 2019. Greenhouse Gas Emissions from Landfills: A Review and Bibliometric Analysis. Sustainability, 11(8), 2282. doi: 10.3390/su11082282.
- 52. Zheng Q.T., Rowe R.K., Feng S.J. 2018. Design of vertical landfill gas collection wells considering non-homogeneity with depth. Waste Management, 82, 26–36. doi: 10.1016/J.WASMAN.2018.10.012.
- 53. Zheng Q.T., Rowe R.K., Feng S.J. 2019. Design of horizontal landfill gas collection wells in nonhomogeneous landfills. Waste Management, 98, 102–112. doi: 10.1016/J.WASMAN.2019.08.017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc9cc848-1d6a-41aa-84b4-8c04fa8ec6cc