Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Zinc oxide (ZnO) is a prominent n-type semiconductor material used in optoelectronic devices owing to the wide bandgap and transparency. The low-temperature growth of ZnO thin films expands diverse applications, such as growth on glass and organic materials, and it is also cost effective. However, the optical and electrical properties of ZnO films grown at low temperatures may be inferior owing to their low crystallinity and impurities. In this study, ZnO thin films were prepared by atomic layer deposition on SiO2 and glass substrates in the temperature range of 46-141℃. All films had a hexagonal würtzite structure. The carrier concentration and electrical conductivity were also investigated. The low-temperature grown films showed similar carrier concentration (a few 1019 cm-3 at 141°C), but possessed lower electrical conductivity compared to high-temperature (>200°C) grown films. The optical transmittance of 20 nm thin ZnO film reached approximately 90% under visible light irradiation. Additionally, bandgap energies in the range of 3.23-3.28 eV were determined from the Tauc plot. Overall, the optical properties were comparable to those of ZnO films grown at high temperature.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1503--1506
Opis fizyczny
Bibliogr. 16 poz., wykr.
Twórcy
autor
- Seoul National University of Science and Technology, Department of Material Science and Engineering, Seoul, Korea
autor
- Seoul National University of Science and Technology, Department of Material Science and Engineering, Seoul, Korea
autor
- Seoul National University of Science and Technology, Department of Material Science and Engineering, Seoul, Korea
autor
- Seoul National University of Science and Technology, Department of Material Science and Engineering, Seoul, Korea
Bibliografia
- [1] W. Zhong Lin, J. Phys.: Condens. Matter. 16, R829-R858 (2004).
- [2] Jari Malm, Elina Sahramo, Juho Perälä, Timo Sajavaara, Maarit Karppinen, Thin Solid Films 519, 5319-5322 (2011).
- [3] L. Jiang, K. Huang, J. Li, S. Li, Y. Gao, W. Tang, X. Guo, J. Wang, T. Mei, X. Wang, Ceram. Int. 44, 11751-11756 (2018).
- [4] B.L. Williams, V. Zardetto, B. Kniknie, M.A. Verheijen, W.M.M. Kessels, M. Creatore, Sol. Energy Mater. Sol. Cells 157, 798-807 (2016).
- [5] Kwang-Chon Kim, Sang-Soon Lim, Seung Hwan Lee, Junpyo Hong, Deok-Yong Cho, Ahmed Yousef Mohamed, Chong Min Koo, Seung-Hyub Baek, Jin-Sang Kim, Seong Keun Kim, ACS Nano, 13, 7146-7154 (2019).
- [6] Hogyoung Kim, Myeong Jun Jung, Seok Choi, Byung Joon Choi, Materials Today Communications 25, 101265 (2020).
- [7] E. Guziewicz, M. Godlewski, L. Wachnicki, T.A. Krajewski, G. Luka, S. Gieraltowska, R. Jakiela, A. Stonert, W. Lisowski, M. Krawczyk, J.W. Sobczak, A. Jablonski, Semicond. Sci. Technol. 27, 074011 (2012).
- [8] Seong Keun Kim, Cheol Seong Hwang, Sang-Hee Ko Park, Sun Jin Yun, Thin Solid Films 478, 103-108 (2005).
- [9] Seong Yu Yoon, Byung Joon Choi, Arch. Metall. Mater. 65, 3, 1041-1044 (2020).
- [10] Sushma Mishra, Ewa Przezdziecka, Wojciech Wozniak, Abinash Adhikari, Rafal Jakiela, Wojciech Paszkowicz, Adrian Sulich, Monika Ozga, Krzysztof Kopalko, Elzbieta Guziewicz, Materials 14, 4048 (2021).
- [11] Yo-Sep Min, Cheng Jin An, Seong Keun Kim, Jaewon Song, Cheol Seong Hwang, Bull. Korean Chem. Soc. 31, 2503 (2010).
- [12] Doyoung Kim, Hyemin Kang, Jae-Min Kim, Hyungjun Kim, Appl. Surf. Sci. 257, 3776-3779 (2011).
- [13] W.J. Maeng, Jin-Seong Park, J. Electroceram. 31, 338-344 (2013).
- [14] Sung Yeon Ryu, Hee Ju Yun, Min Hwan Lee, Byung Joon Choi, Arch. Metall. Mater. 66, 755-758 (2021).
- [15] N.Y. Yuan, S.Y. Wang, C.B. Tan, X.Q. Wang, G.G. Chen, J.N. Ding, J. Cryst. Growth 366, 43-46 (2013).
- [16] Dipayan Pal, Jaya Singhal, Aakash Mathur, Ajaib Singh, Surjendu Dutta, Stefan Zollner, Sudeshna Chattopadhyay, Appl. Surf. Sci. 421, 341-348 (2017).
Uwagi
1. This study was financially supported by the Seoul National University of Science and Technology.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc99e431-a47c-4515-9d8d-c533c1353f15