Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research was conducted to synthesize and characterize hydroxyapatite-titania (HA/TiO2) composites and test their photocatalytic degradation activity on the remazol red RB textile dye. The chemical precipitation method was utilized to produce hydroxyapatite (HA) based on the conversion of calcium carbonate presented in sea mussel shells into calcium oxide with a calcination temperature of 1000°C for 2 hours and then followed by the addition of phosphorous acid at pH medium of 11 and sintered at 700°C to obtain an HA crystal. The HA/TiO2 composite at variation weight of HA and TiO2 ratio were prepared with hydrothermal technique and characterized by the FTIR spectroscopy, X-ray diffraction, and scanning electron with energy dispersive X-ray spectroscopy. A total of 250 mL of 50 mg/L Remazol red RB dye solution was photocatalytically removed using a HA/TiO2 composite irradiated with 25 Watt UV light and using the adsorption method. Characterization results using FTIR, XRD, and SEM-EDX show that the synthesized hydroxyapatite (HA) has a degree of crystallinity of 68% with a Ca/P ratio of 1.66. The highest degradation efficiency of 250 mL of remazol red RB with a concentration of 50 mg/L was achieved at 94.22% in 2 hours of contact time by a photocatalysis treatment employing the HA/TiO2 composite at a ratio of 1:1 in comparison to only 92.23% removal by the HA adsorption process.
Wydawca
Rocznik
Tom
Strony
178--189
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja 81117 Bali, Indonesia
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja 81117 Bali, Indonesia
Bibliografia
- 1. Aaddouz M., Azzaoui K., Akartasse, N., Mejdoubi E., Hammouti B., Taleb M., Sabbahi R., Alshahateet S.F. 2023. Removal of methylene blue from aqueous solution by adsorption onto hydroxyapatite nanoparticles. J. Mol. Struct. 1288: 135807. https://doi.org/10.1016/j.molstruc.2023.135807
- 2. Ahmed Y.M.Z., El-Sheikh S.M., Zaki Z.I. 2015. Influence of heat treatment and dispersing agent addition on hydroxyapatite powder properties and its suspension characteristics. Asian J. Chem. 27(7): 2608– 2618. http://dx.doi.org/10.14233/ajchem.2015.18543
- 3. Akuma D.A., Hundie K.B., Bullo T.A. 2022. Performance improvement of textile wastewater treatment plant design by STOAT model simulation. Environ. Health Eng. Manag. J. 9(3): 213–221. https://doi.org/10.34172/EHEM.2022.22
- 4. Alarcón M.A.D.F., Pacheco C.R., Bustos K.G., Meza K.T., Terán-Hilares F., Tanaka D.A.P., Andrade G.J.C., Terán-Hilares R. 2022. Efficient dye removal from real textile wastewater using orange seed powder as suitable bio-adsorbent and membrane technology. Water. 14:1–14. https://doi.org/10.3390/w14244104
- 5. Al-Hamdan R.S., Almutairi B., Kattan H.F., Alresayes S., Abduljabbar T., Vohra F. 2020. Assessment of hydroxyapatite nanospheres incorporated dentin adhesive. A SEM/EDX, micro-raman, microtensile and micro-indentation study. Coatings. 10(12):1–12. https://doi.org/10.3390/coatings10121181
- 6. Alobaidi T.B., Alwared A.I. 2022. Biosynthetic of Titanium Dioxide Nanoparticles Using Zizyphus Spina-Christi Leaves Extract: Properties. J. Ecol. Eng. 23(1): 315–324. https://doi. org/10.12911/22998993/143971
- 7. Al-Rubaiey N.A. 2022. A trend in ozone treatment of wastewater: A Review. Iraqi J.Oil Gas Res. 2(1): 5564. http://doi.org/10.55699/ijogr.2022.0201.1016
- 8. Al-Sultan A.A., Kadhim R.J., Al-Emami O.H., Alsalhy Q.F., Majdi H.S. 2022. Optimization of graphene oxide mixed matrix membrane for AB-210 dye removal. J. Ecol. Eng. 23(9): 115–127. https://doi.org/10.12911/22998993/151746
- 9. Arif S., Hermana G.N., Khalida Z., Arif M.W., Puspita I. Synthesis of biomaterial hydroxyapatite from limestone by using two-step conversion. Int. J. Sci. Eng. Inf. Technol. 5(1): 236–238.
- 10. Asmawati A., Thalib B., Thalib A.M., Reni D.S., Hasyim R. 2018. Comparison of blood clam (Anadara granosa) shell paste, shrimp (Litopenaeus vannamei) shell paste and casein phosphopeptideamorphus calcium phosphate (CPP-ACP) paste as teeth remineralization material. J. Dentomaxillofacial Sci. 3(3): 162–165. https://doi.org/10.15562/jdmfs.v3i3.834
- 11. Azanaw A., Birlie B., Teshome B., Jemberie M. 2022. Textile effluent treatment methods and ecofriendly resolution of textile wastewater. Case Stud. Chem. Environ. Eng. 6:100230. https://doi.org/10.1016/j.cscee.2022.100230
- 12. Barakat N.A.M., Irfan O.M., Mohamed O.A. 2023. TiO2NPs-immobilized silica granules: New insight for nano catalyst fixation for hydrogen generation and sustained wastewater treatment. PLoS One. 18(6): e0287424. https://doi.org/10.1371/journal.pone.0287424
- 13.Borciani G., Fischetti T., Ciapetti G., Montesissa M., Baldini N., Graziani G. 2023. Marine biological waste as a source of hydroxyapatite for bone tissue engineering applications. Ceram. Int. 49(2): 1572–1584. https://doi.org/10.1016/j.ceramint.2022.10.341
- 14. Cahyaningrum S.E., Herdyastuty N., Devina B., Supangat D. 2017. Synthesis and characterization of hydroxyapatite powder by wet precipitation method. IOP Conf. Series: Mater. Sci. Eng. 299: 012039. https://doi.org/10.1088/1757-899X/299/1/012039
- 15. Chong R, Fan Y, Du Y, Liu L, Chang Z, Li D. 2018. Hydroxyapatite decorated TiO2 as efficient photocatalyst for selective reduction of CO2 with H2O into CH4. Int. J. Hydrogen Energy. 43(49): 22329–22339. https://doi.org/10.1016/j.ijhydene.2018.10.045
- 16. Dermawan, S.K., Ismail Z.M.H., Jaffri M.Z., Abdullah H.Z. 2022. Effect of the calcination temperature on the properties of hydroxyapatite from black tilapia fish bone. Journal of Physics. 1:012034. https://doi.org/10.1088/1742-6596/2169/1/012034
- 17. Dihom H.R., Al-Shaibani M.M., Mohamed R.M.S.R., Al-Gheethi A.A., Sharma A., Khamidun M.H.B. 2022. Photocatalytic degradation of disperse azo dyes in textile wastewater using green zinc oxide nanoparticles synthesized in plant extract: A Critical review. J. Water Process. Eng. 47. 102705. https://doi.org/10.1016/j.jwpe.2022.102705
- 18. Fatimah I., Hidayat H., Citradewi P.W., Tamyiz M., Doong R., Sagadevan S. 2023. Hydrothermally synthesized titanium/hydroxyapatite as photoactive and antibacterial biomaterial. Heliyon. 9(3): e14434. https://doi.org/10.1016/j.heliyon.2023.e14434
- 19. Ghaly A.E., Ananthashankar R., Alhattab M., Ramakrishna V.V. 2014. Production, characterization and treatment of textile effluents: A Critical review. J. Chem. Eng. Process. Technol. 5(1): 1-18. http://dx.doi.org/10.4172/2157-7048.1000182
- 20. Hayashi T., Nakamura K., Suzuki T., Saito N., Murakami Y. 2020. OH radical formation by the photocatalytic reduction reactions of H2O2 on the surface of plasmonic excited Au-TiO2 photocatalysts. Chem. Phys. Lett. 739: 136958. https://doi.org/10.1016/j.cplett.2019.136958
- 21. Hossain M.S., Tuntun S.M., Bahadur N.M., Ahmed S. 2022. Enhancement of photocatalytic efficacy by exploiting copper doping in nano-hydroxyapatite for degradation of Congo red dye. R. Soc. Chem.12: 34080–34094. https://doi.org/10.1039/d2ra06294a
- 22. Izzetti R., Genna S., Nisi M., Gulia F., Miceli M., Giuca M.R. 2022. Clinical applications of nanohydroxyapatite in dentistry. Appl. Sci. 12: 10762. https://doi.org/10.3390/app122110762
- 23.Jamil Y.M.S., Awad M.A.H., Al-Maydama H.M.A., Alhakimi A.N., Shakdofa M.M.E., Mohammed S.O. 2022. Gold nanoparticles loaded on TiO2 nanoparticles doped with N2 as an efficient electrocatalyst for glucose oxidation: preparation, characterization, and electrocatalytic properties. J. Anal. Sci. Technol. 13(54): 1–16. https://doi.org/10.1186/s40543-022-00363-0
- 24. Kumar K.C.V., Subha T.J., Ahila K.G., Ravindran B., Chang S.W., Mahmoud A.H., Mohammed O.B., Rathi M.A. 2021. Spectral characterization of hydroxyapatite extracted from black Sumatra and fighting cock bone samples: A comparative analysis. Saudi J. Biol. Sci. 28: 840–846.
- 25. Kumar C.S., Dhanaraj K., Vimalathithan R.M., Ilaiyaraja P., Suresh G. 2020. Hydroxyapatite for bone related applications derived from sea shell waste bysimpleprecipitation method. J.Asian Ceram. Soc. 8(2): 416–429. https://doi.org/10.1080/21870764.2020.1749373
- 26. Latha A., Partheeban P., Ganesan R. 2017. Treatment of textile wastewater by electrochemical method. Int. J. Earth Sci. Eng.10(1): 146–149. https://doi.org/10.21276/ijee.2017.10.0124
- 27. Mancuso A., Lervolino G. 2022. Synthesis and application of innovative and environmentally friendly photocatalysts: A Review. Catalyst. 12(10): 1074. https://doi.org/10.3390/catal12101074
- 28. Mirkovic M., Filipovic S., Kalijadis A., Maskovic P., Maskovic J., Vlahovic B., Pavlovic V. 2022. Hydroxyapatite/TiO2 Nanomaterial with defined microstructural and good antimicrobial properties. Antibiotics.11(592): 1–14. https://doi.org/10.3390/antibiotics11050592
- 29. Musthofa A.M.H., Syafila M., Helmy Q. 2023. Effect of activated carbon particle size on methylene blue adsorption process in textile wastewater. Indones. J. Chem. 23(2): 461–474. https://doi.org/10.22146/ijc.79784
- 30. Naik A.S., Mora L., Hayes M. 2020. Characterisation of seasonal mytilus edulis by-products and generation of bioactive hydrolysates. Appl. Sci. 10: 6892. https://doi.org/10.3390/app10196892
- 31. Nguyen T.T.V., Anh N.P., Ho T.G.T., Pham T.T.P., Nguyen P.H.D., Do B.L., Huynh H.K.P., Nguyen T. 2022. Hydroxyapatite derived from salmon bone as green ecoefficient support for ceriadoped nickel catalyst for CO2 methanation. ACS Omega. 7: 36623–36633. https://doi.org/10.1021/acsomega.2c04621
- 32. Noviyanti A.R., Asyiah E.N., Permana M.D., Dwiyanti D., Suryana., Eddy D.R. 2022. Preparation of hydroxyapatite-titanium dioxide composite from eggshell by hydrothermal method: Characterization and antibacterial activity. Crystals. 12(11):1–15. https://doi.org/10.3390/cryst12111599
- 33. Odabaşi U.S., Boudraà I., Aydin R. 2022. Photocatalytic removal of pharmaceuticals by immobilization of TiO2 on activated carbon by LC–MS/MS monitoring. Water Air Soil Pollut. 233:111. https://doi.org/10.1007/s11270-022-05579-9
- 34. Ojha P., Shrivastava R. 2023. Electrochemical oxidation of textile effluents and further treatment by coupled system electrooxidation using prosopis cineraria. Indian J. Chem. Technol. 30:242-246. https://doi.org/10.56042/ijct.v30i2.69010
- 35. Oyetade J.A., Machunda R.L., Hilonga A. 2022. Photocatalytic degradation of azo dyes in textile wastewater by Polyaniline composite catalyst: A Review. Sci. Afr. 17:1–27. https://doi.org/10.1016/j.sciaf.2022.e01305
- 36. Pai S., Kini M.S., Mythili R., Selvaraj R. 2022. Adsorptive removal of AB113 dye using green synthesized hydroxyapatite/magnetite nanocomposite. Environ. Res. 210: 112951. https://doi.org/10.1016/j.envres.2022.112951
- 37. Qutub N., Singh P., Sabir S., Sagadevan S., Oh W.C. 2022. Enhanced photocatalytic degradation of acid blue dye using CdS/TiO2 nanocomposite. Sci. Rep. 12: 5759. https://doi.org/10.1038/s41598-022-09479-0
- 38. Raj S., Singh H., Bhattacharya J. 2023. Treatment of textile industry wastewater based on coagulation-flocculation aided sedimentation followed by adsorption: Process studies in an industrial ecology concept. Sci. Total Environ. 857(2): 159464. https://doi.org/10.1016/j.scitotenv.2022.159464
- 39. Rajabi H.R., Sajadiasl F., Karimi H. 2020. Green synthesis of zinc sulfide nano photocatalysts using aqueous extract of Ficus Johannis plant for efficient photodegradation of some pollutants. J Mark Res. 9: 15638–15647. https://doi.org/10.1016/j.jmrt.2020.11.017
- 40.Reddy A.S., Kalla S., Murthy Z.V.P. 2022. Textile wastewater treatment via membrane distillation. Environ. Eng. Res. 27(5): 1–16. https://doi.org/10.4491/eer.2021.228
- 41. Ren G., Han H., Wang Y., Liu S., Zhao J., Meng X., Li Z. 2021. Recent Advances of Photocatalytic Application in Water Treatment: A Review. Nanomaterials.11(7): 1804. https://doi.org/10.3390/nano11071804
- 42. Sahoo C., Panda B.B., Gupta A.K. 2022. Design aspects of a continuous flow photocatalytic reactor and its application to degrade methylene blue and textile wastewater. Chem. Eur. 7(38): e202201179. https://doi.org/10.1002/slct.202201179
- 43. Sastrawidana D.K., Rachmawati D.O., Sudiana K. 2018. Color removal of textile wastewater using indirect electrochemical oxidation with multi carbon electrodes. EnvironmentAsia 11(3), 170-181. https://doi.org/10.14456/ea.2018.46
- 44. Siddiqui S.I., Allehyani E.S., Al-Harbi S.A., Hasan Z., Abomuti M.A., Rajor H.K., Oh S. 2023. Investigation of Congo Red Toxicity towards Different Living Organisms: A Review. Processes. 11(3): 807. https://doi.org/10.3390/pr11030807
- 45. Sirajudheen P., Kasim V.R., Nabeena C.P. 2021. Tunable photocatalytic oxidation response of ZnS tethered chitosan-polyaniline composite for the removal of organic pollutants: A mechanistic perspective. Mater Today 47: 2553–2559. https://doi.org/10.1016/j.matpr.2021.05.054
- 46. Solonenko A.P., Shevchenko A.E., Rozdestvensky A.A., Dzyuba G.G. 2022. Investigation of the process and products of calcination of composite granules based on hydroxyapatite, wollastonite and gelatine. IOP Conf. Ser.: J. Phys. 2182: 012081. https://doi.org/10.1088/1742-6596/2182/1/012081
- 47. Sudiana I.K., Citrawathi D.M., Sastrawidana I.D.K., Sukarta I.N., Wirawan G.A.H. 2022. Biodegradation of turquoise blue textile dye by wood degrading fungi isolated from a plantation area. J. Ecol. Eng. 23(7), 205–214. https://doi.org/10.12911/22998993/150044
- 48. Sukarta I.N., Ayuni N.P.S., Sastrawidana I.D.K. 2021. Utilization of khamir (Saccharomyces cerevisiae) as adsorbent of remazol red RB textile dyes. Ecol. Eng. Environ. Technol. 22(1):117–123. https://doi.org/10.12912/27197050/132087
- 49. Syafira R.S., Devi M.J., Gaffar S., Hartati Y.W. 2023. Immobilization of biomolecules on hydroxyapatite and Its composites in biosensor application: A Review. Biointerface Res. Appl. Chem.13(5): 1–17. https://doi.org/10.33263/BRIAC135.499
- 50. Touati A, Hammed T, Najjar W, Ksibi Z, Sayadi S. 2016. Photocatalytic degradation of textile wastewater in presence of hydrogen peroxide: Effect of cerium doping titania. J. Ind. Eng. Chem. 35(25):36– 44. https://doi.org/10.1016/j.jiec.2015.12.008
- 51. Ummartyotin S., Tangnorawich B. 2015. Utilization of eggshell waste as raw material for synthesis of hydroxyapatite. Colloid Polym. Sci. 239: 2477–2483. https://doi.org/10.1007/s00396-015-3646-0
- 52. Vital-Grappin A.D., Ariza-Tarazona M.A., Luna-Hernández V.M., Villarreal-Chiu J.F., Hernandez-Lopez J.M., Siligardi C., Cedillo-González E.I. 2021. The Role of the reactive species involved in the photocatalytic degradation of HDPE microplastics using C, N-TiO2 powders. Polymers.13(7):1–18. https://doi.org/10.3390/polym13070999
- 53. Wardhani S., Rahman M.F., Purwonugroho D., Tjahjanto R.T., Damayanti C.A., Wulandari I.O. 2016. Photocatalytic degradation of methylene blue using TiO2- natural zeolite as a photocatalyst. J. Pure appl. Chem. Res. 5(1): 19–27. http://dx.doi.org/10.21776/ub.jpacr.2016.005.01.232
- 54. Wu S.C., Hsu H.C., Wang H.F., Liou S.P., Ho W.F. 2023. Synthesis and characterization of nano-hydroxyapatite obtained from eggshell via the hydrothermal process and the precipitation method. Molecules. 28(492): 1–13.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc97d9a3-0cb0-43b1-a204-10d4bc022bdc