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Towards the Applications of Algorithms for

Inverse Solutions in EEG Brain-Computer Interfaces
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Abstract—Locating the sources of EEG signals (signal genera-
tors), i.e. indicating the places in the brain that the signals come
from is the objective of the inverse problem in BCI applications
using EEG. The two algorithms based on the methods used in
the inverse problem: the linear least squares method and the
LORETA1 method were compared. An analysis of the accuracy
of locating the sources generating EEG signals on the basis of
the two above mentioned methods was carried out with the use
of the MATLAB programme. The findings made it possible to
determine both the complexity of calculation involved in the
methods under consideration and to compare the accuracy of the
results obtained. Tests were done in which the inverse problem
was solved on the basis of the data that were entered from the
electrodes. Then potentials on electrodes were found by means of

solving the forward problem once again Φ(Φ −→ Φ̂). Moreover,
tests were conducted on simulated data describing current density
at selected places in the brain. In this case potentials on the
electrodes were found by means of solving the forward problem.
Subsequently the inverse problem was solved and potentials at

selected places in the brain were specified J(J −→ Ĵ). In the

case of J(J −→ Ĵ) only the relative error was examined, while
the variance was studied in both cases. As a result of doing
the tests, it was proved that relative errors were the same in
the SVD and PINV methods, while in the LORETA method the
error was similar. The variance computed for these methods was
more differentiated for each of the cases, which made it possible
to compare the algorithms in a better way. Differentiation of the
variances under 0.2 shows that the algorithms that have been
analyzed work properly.

On the basis of knowing the results of the inverse problem,
an attempt was made to make a selection of the best features of
the EEG signal which differentiates the classes. In the present
work tests were conducted to examine the differentiation of
selected classes. Welch’s t-statistics was used to differentiate and
order them. The results of the tests present the order for three
classes of thought tasks, i.e. imagining moving one’s left hand,
imagining moving one’s right hand, imagining generating words
beginning with a randomly chosen letter. The present work is an
introduction to a wider classification of features which are made
with the use of inverse solutions.

Keywords—BCI, EEG, inverse solutions, minimizing norm
method, LORETA

I. INTRODUCTION

A
CCORDING to the definition coined by Jonathan R.

Wolpaw at the first international conference on the

brain–computer interface (BCI) in 1999 r. “A brain-computer

interface (BCI) is a communication or control system in

which the user’s messages or commands do not depend on

U. Jagodzińska is with Bumar Elektronika S.A., Poligonowa 30, 04-051
Warszawa, Poland (e-mail: urszula.jagodzinska@bumar.com).

1The LORETA method and the inverse problem with the algorithms used
for calculation were presented in the article [1].

the brain’s normal output channel. That is, the message is

not carried by nerves and muscles, and, furthermore, neuro-

muscular activity is not needed to produce the activity that

does carry the message...”. The electromagnetic waves of

the brain are registered by means of electroencephalography

(EEG) or magnetoencephalography (MEG) techniques. In BCI

it is EEG, which examines the electrical activity of the brain,

that is most frequently used. It is on this technique that the

present article focuses. The electrical EEG signal is recorded

from the surface of the scalp by means of electrodes. Some

features of the registered signal are used in BCI systems.

These signals are classified and interpreted in real time, e.g. for

steering. Locating the sources of the brain’s activity registered

on the surface of the scalp in space, i.e. solving the inverse

problem, is one of the basic problems in BCI. Since work is

conducted on the simplified model of the sources perceived as

current dipoles placed at different points of the brain, it must

be remembered that there is an infinite number of different

configurations of these sources which generate the same

distribution of potentials on the surface of the scalp. Effective

algorihtms for inverse methods can influence the reduction of

errors while locating signal sources. Using inverse solutions

can improve the classification of EEG signals. The first stage

leading to solving the inverse problem is to formulate the

forward problem. This is done by means of computing the

distribution of the potentials placed on the surface of the head.

It is assumed that the distribution of current density inside

the brain is known. The space of the brain is divided into

hypothetical elements of space – i.e. voxels. The direction

and value of current density in each voxel is assumed to

be constant. For each voxel these values are represented by

the J vector which is three times as large as the number of

voxels (three space coordinates). The potentials measured on

the electrodes on the surface of the scalp are recorded on

the Φ vector whose measurements are equal to the number of

electrodes [2].

The article presents and compares computation algorithms

which are indispensable for solving inverse problems. This is

based on locating the places in the brain that the EEG signals

come from. They are read by means of electrodes placed on the

surface of the head. The author’s algorithms were presented.

Subsequently their accuracy was tested using preprocessed

data, including those provided by the Idiap Research Institute.

In this study the spherical head model was adopted with the

scull surface radius of R = 80 mm. It was assumed that the

center of the head model is located at a certain point inside

the head and the radius of the sphere with the cerebral cortex

equals r = 60 mm.
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278 U. JAGODZIŃSKA

Examples of the application of inverse problems can be

found in the following works: [3], [4], [5], [6].

In the present article all the n-element vectors presented are

called matrices with the measurements n× 1.

II. PRESENTATION OF THE PROBLEM AND PROPOSED

SOLUTIONS

Solving the inverse problem consists in specifying the

location of the EEG sources (generators). This means that the

places that the signals come from are designated [1].

Forward problem:

Φ = KJ (1)

where Φ is the matrix measuring ne × 1, with the ne number

of electrodes placed on the surface of the head. The potentials

measured at the electrodes (sensors) are recorded in the Φ
matrix and J = (j1, j2, . . . , jnv

)
T

is the matrix measuring

(3 · nv)×1 where jβ =
(
jβx

, jβy
, jβz

)T
, while β = 1, . . . , nv

is the matrix of current density in each particular voxel β.

The strength of the source and its location are important in

the inverse problem. Let K be the matrix of measurement

ne× (3nv). The K matrix matches individual electrodes with

voxels. Usually nv >> ne. The K matrix is called the transfer

matrix [1].

Inverse problem:

Ĵ = TΦ (2)

where Ĵ approximation of the J matrix, T is the generalized

inverse matrix. The solution to the inverse problem Ĵ is,

therefore, only an approximation to the J matrix. The extent

of the error will depend on the T matrix. The structure of

the T matrix depends on the method of solving the inverse

problem.

The algorithms that have been suggested for solving inverse

problems:

1) Minimizing the norm using the method of least squares

(PINV). Let us now look for the min

min
J

‖Φ−KJ‖2 (3)

where ‖ • ‖ denotes the Euclidean norm. In order to

specify the minimum of the norm [7] the minimum

of function F (J) = ‖Φ − KJ‖2 is examined. The

minimum that is looked for is determined in the Ĵ
matrix, which is the solution to the so-called normal

equation
(
KTK

)
Ĵ = KTΦ. The solution to the normal

equation takes the form

Ĵ =
(
KTK

)−1
KTΦ (4)

The
(
KTK

)
−1

KT matrix is the Moore-Penrose pseu-

doinverse matrix K+. Let mark
(
KTK

)
−1

KT = K+.

Hence

Ĵ = K+Φ, T = K+ (5)

The K+ matrix can by determined using the MATLAB

programme.

2) Minimizing the ‖Φ−KJ‖2 norm using QR decompo-

sition of the K matrix [8] (QR).

K = QRPT (6)

where tha Q matrix and the P matrix are orthogonal

matrices. Q is measuring ne × ne, P is the permuta-

tion matrix (orthogonal) (3nv)× (3nv), R = [A | B],
Ane×ne

, rank A = ne. Based on [8], supposing

B = [0]ne×(3nv−ne)
it is possible to minimize norm

‖Φ−KJ‖2

Ĵ = P ·

[
A−1QTΦ

0

]
}

}

(ne × 1)

(3nv − ne)× 1
(7)

In this case only the limited number ne voxels, relating

only to the linearly independent columns of the K
matrix were taken into account. This is a significant

limitation of the algorithm presented, since it was

possible to analyse only selected voxels in calculating

the error.

3) Minimizing the ‖Φ − KJ‖2 norm using the SVD de-

composition of the K matrix [8] (SVD).

K = USV T (8)

where U is the orthogonal matrix ne×ne, V(3nv)×(3nv)

is the orthogonal matrix, Sne×(3nv) as [C | 0], where

C is the diagonal matrix. The pseudoinverse S+ matrix

can be obtained by taking the inverse elements on the

diagonal of the matrix C. Then the KJ = Φ equation

takes the form USV TJ = Φ, therefore

Ĵ = V S+UTΦ (9)

is the solution to the inverse problem, where

V S+UT = T .

4) The LORETA method (LORETA). The method was

presented in the following articles: [9], [10], [11]. The

article [1] presents one version of this method. It consists

in finding the extremum

min
J

(
JTWJ

)
, under constraint Φ = KJ (10)

where W is a positive defined weight matrix. The

approximate solution J then takes the form

Ĵ = TΦ (11)

where

T = W−1KT
[
KW−1KT

]+
(12)

III. DESCRIPTION OF THE RESULTS OBTAINED

In order to check that the algorithms described in the

previous chapter work correctly, tests were conducted using

the MATLAB programme. The calculations were based on

the assumption that the way the electrodes were placed on

the surface of the head is consistent with the 10-20 (the
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standard recommended by the International Federation of

Clinical Neurophysiology IFCN [12]). The electrode signals

that were used were taken from the signal database made

available by the Idiap Research Institute2. In addition, num-

bers obtained in a random sampling mode were used. Their

Cartesian coordinates were applied for points specifying the

location of the electrodes and voxels (based on their spherical

coordinates). All the calculations were made according to the

Idiap assumptions, i.e. 32 electrodes were taken into account:

Fp1, AF3, F7, F3, FC1, FC5, T7, C3, CP1, CP5, P7, P3, Pz,

PO3, O1, Oz, O2, PO4, P4, P8, CP6, CP2, C4, T8, FC6, FC2,

F4, F8, AF4, Fp2, Fz, Cz, while in the case of preprocessed

data, the C3, Cz, C4, CP1, CP2, P3, Pz and P4 electrodes

were examined.

In the spherical model of the head that was assumed, the

φ = 20◦, Θ = 10◦ spherical coordinates were adapted for

calculation, which produced 162 voxels. The view of the

voxels and the 32 electrodes is presented in Fig. 13 and

Fig 24. The Cartesian coordinates of the placement of both

the electrodes and the voxels were calculated by the author

on the basis of the spherical coordinates of these points. The

voxels were marked blue and the electrodes red.

Data set V featuring the following parameters: 3 classes,

32 EEG channels (DC-256 Hz), 512 Hz sampling rate, contin-

uous EEG and precomputed features5 (multi-class problems,

classification of continuous EEG without trial structure) were

taken from the signal database made available by Idiap and

prepared for the BCI Competition III [13]. The V packet

that was used contains data referring to the performance of

thinking tasks at a specified time by three users. The people

examined performed the following tasks in a continuous

way: imagining moving one’s left hand, imagining moving

one’s right hand, imagining generating words beginning with

a randomly chosen letter. The packet included both raw and

preprocessed signals. The processing of the data consisted of

performing Laplace’s space filtration and subsequently Power

Spectral Density (PSD) at the frequency domain 8–30 Hz.

In order to check that the algorithms work correctly for

a sample of arbitrarily recorded random data and for ordered

data, the 〈0, 1〉 interval was tested both when simulating the

recording of potentials for the electrodes and for the voxels.

In the case of recording ordered data, the layout of the areas

was assumed according to Figs. 3 and 4.

Figure 3 shows examples of ordering the areas of the

data recorded into the electrodes in order to check that the

calculation algorithms based on the linear least squares method

and the LORETA method work correctly for the implemented

calculation methods.

An example of ordering the areas of the data recorded

into voxels in order to check that the calculation algorithms

implemented work correctly are shown in Fig. 4.

In the case of the recorded data (raw and ordered), a single

moment of time was considered, while in the case of Idiap data

2Idiap Research Institute Switzerland (Silvia Chiappa, José del R. Millán).
3Created by the Author with the use of MATLAB.
4Created by the Author with the use of MATLAB.
5More information on Data Set V on the web page http://www.bbci.de/

competition/iii/desc_V.html.

Fig. 1. The map of the voxels and the electrodes – view of the top.

Fig. 2. The map of the voxels and the electrodes – view of the side.

Fig. 3. Examples of ordering the areas of the data recorded into the electrodes
(a, b, c, d, e).

the algorithm worked for all the registered moments of time in

turn. Results were presented at 10 Hz frequencies (Alpha and

Mu wave frequencies), and 20 Hz (Beta wave frequencies) for

preprocessed Idiap data.

Results obtained for various methods were compared. In the

case where data were recorded into voxels (J −→ Ĵ) in order

to calculate the error the calculation included:

• the relative error
∑

k(Ĵk − Jk)
2

∑
k(Jk)

2
(13)

k runs from 1 to nv, Jk is the exact solution of

the problem Φ = KJ , Ĵ is approximation J , where

Ĵk =
√

Ĵ2
kx + Ĵ2

ky + Ĵ2
kz and Jk =

√
J2
kx + J2

ky + J2
kz
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Fig. 4. Example of ordering the areas of the data recorded into the voxels.

• variance ∑
k(Ĵk − J̄)2

nv

(14)

where J̄ = 1
nv

∑
k Jk, k runs from 1 to nv.

Table I presents the relative error and the variance for the

recorded J(J −→ Ĵ). The value of the relative error is

given in dimensionless quantities, while the variance unit is

(A/m3)2.

TABLE I
RELATIVE ERROR AND VARIANCE FOR J(J −→ Ĵ) RECORDS

Method
ordered random

relative error variance relative error variance
SVDa 0.1344 0.0281 0.0783 0.0229

PINVb 0.1344 0.0281 0.0783 0.0229
QRc – – – –
LORETA 0.1433 0.0310 0.0819 0.0223
a calculations for the algorithm with the SVD layout
b calculations for the Moore-Penrose pseudo inverse algorithm
c calculations for the algorithm with the QR layout

In the case of the QR method, the relative error and the

variance were not tested, due to the specific nature of the

algorithm. The QR algorithm should be treated as one of the

proposal of solving the inverse problem.

In the case of recording data into electrodes Φ(Φ −→ Φ̂) in

order to calculate the error the variance can be calculated as

∑
k

(
Φ̂k − Φ̄

)2

ne

(15)

where Φ̄ = 1
ne

∑
k Φk, k runs from 1 to ne, Φ̂ is the

approximation of Φ (Φ̂ = KĴ , Ĵ = TΦ, where T is the

generalized matrix which is an inverse of the K matrix).

The variance values obtained in the case of the Φ(Φ −→ Φ̂)
supplied with Idiap data, arbitrarily recorded random data and

ordered data are the same for all the methods of computing

(the minimum of squares (SVD, PINV, QR) and LORETA)

depending on the case under consideration.

Regarding the ordered Φ values presented in Fig. 3 they

are as follows: a) variance = 0.0886, b) variance = 0.0590, c)

variance = 0.0048, d) variance = 0.1594, e) variance = 0.0675.

In the case of random Φ the variance obtained for all the

calculation methods is 0.0779. As for Φ Idiap data the 10 Hz

variance = 0.00161, for 20 Hz the variance = 0.00004.

The present paper gives the mean variance for all the

moments of time for Idiap data (because of a large number

of Idiap data). The low values of variance when using real

Idiap data show that the calculation algorithms are accurate.

It is significant that in all the cases the QR algorithm chooses

only linearly independent voxels. Due to this the information

obtained as a result of using the algorithm seems to be clearer,

but its downside is that the information is not complete.

The LORETA method is characterized by a much longer

time of calculation than the linear least squares method. This

is probably due to the greater complexity of the LORETA

method when compared to the linear least squares method.

Due to this the LORETA algorithm is more difficult when it

comes to implementing it in real time. After analyzing the

results obtained and their accuracy, it was ascertained that the

rendering of the location is possible only after preprocessing.

Implementing the calculation algorithm on the basis of raw

data read from the electrodes (Raw) without preprocessing

the signal does not yield correct information on the source of

the signal. Both recorded ordered and random data can also

be treated as raw data (Raw). Obtaining reliable information

on the location of the source is possible only by means of

analyzing the data that were preprocessed. The functioning

of the algorithms on preprocessed data for the Alpha, Beta

and Mu rhythms was analyzed. Significant variation of the

values of the potential was observed in voxels connected with

mental activity in the motor cortex (connected with changes

in the Beta and Mu waves). There was observed attenuation

of potential in voxels connected with mental activity in the

occipital lobe area (connected with Alpha waves). Besides

calculating the variances checking the calculation of the

computing algorithms for Idiap data, a comparison of the

sources designated by means of the author’s own calculations

were compared to those specified by the generally accessible

sLORETA program, whose author is Pascual-Marqui R.D. The

characteristic feature of that program is that it is known for

its good location results. The layout of the areas located as

sources of EEG signals was similar both in case of using

the author’s own calculation algorithms and the program by

Pascual-Marqui R.D.

IV. ANALYSIS AND INTERPRETATION OF EEG SIGNALS

Knowing the location of the electrical signals of the brain

obtained when finding the solution to the inverse problem can

help analyze and interpret EEG signals. The diagram (Fig. 5)

shown in paper [14] p. 89 can be an inspiration for research

on using inverse problems in BCI.

The current article presents an introductory selection of

features on the basis of locating generators and describes the

attempt that was made to classify those features. It is known

Fig. 5. Inverse problem in BCI. [14]
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that the number of features generated by the brain for thinking

tasks ranges from a few to a few thousand [15]. The large

number of features makes it impossible to teach the classifier

in an effective way. The paper [15] suggests using t-statistics

to order and reduce the features to be used in BCI systems.

The present article suggests using such statistics to conduct

the test. So that t-statistics is specified with the formula

t =
x1 − x2√
S2

1

N1

+
S2

2

N2

(16)

where xi is the approximation in the i-sample, S2
i is a variance

in the i-sample, Ni is the size of the sample, for i = 1, 2. The

value of t-statistics for two samples specifies the degree of

differentiation of the features in two different samples. An

experiment was conducted comprising in testing the hypothe-

ses using this statistics at the assumed level of significance.

Since solutions to the inverse problem were calculated for the

purpose of this experiment, the test relates to those solutions,

and not the potentials on the electrode like in [15].

Description of the experiment. The signals which were

used for the experiment were taken from the Idiap Research

Institute database. Besides, information on the location of sig-

nals generated by brain neurons were used. This information

can be obtained if one knows the elements of the Ĵ matrix

measuring 3nv × 1 (formulas (4), (7), (9), (11)), where every

element of the matrix takes the form Ĵβ =
(
Ĵβx

, Ĵβy
, Ĵβz

)T
,

β = 1, . . . , nv, where nv is the number of the voxels under

consideration. The length | Ĵβ |=
√
(Ĵ2

βx
+ Ĵ2

βy
+ Ĵ2

βz
) of

the vector can also be calculated. Besides, the Cartesian

coordinates of the point where the voxel numbered β (chapter

III) are also known. In the experiment nv = 162. One sample

is a reading of potentials registered by 32 electrodes fixed to

the head according to the 10-20 system, while after processing

8 electrodes in the Φ matrix were taken into account. After

solving the inverse problem using the first of the algorithms

suggested for the frequency 20 Hz (Beta wave frequencies),

the values that were obtained were recorded in the Ĵ matrix.

Three classes of thought tasks were taken into account:

• K2 – imagining moving one’s left hand

• K3 – imagining moving one’s right hand

• K7 – imagining generating words beginning with a ran-

domly chosen letter.

The coordinate features taken into account were voxel

coordinates (x,y,z) and the density of the current at the voxels

(A/m3), i.e. | Ĵβ |.
Visualization is an important element in selecting the fea-

tures. The algorithms processed in the course of the experiment

can be useful for locating places on the head that signals

which are interesting for each class and have the highest

current density came from. An example of the visualisation

of voxel layout for the left and right hemisphere is presented

in Fig. 6. The visualization that was conducted is a result of

the calculations that had been made earlier. In each of the three

classes (K2, K3, K7) it is possible to consider (select) only

that part which is significant for the given class of elements

in the Ĵ matrix connected with the area selected.

304 samples (from class K7), then 272 samples (from class

K3) and finally 288 samples (from class K2) were entered

in succession. Next, t-statistics was used to order the features

of the classes under consideration (selected voxels and the

current density connected with them). It was assumed that

the feature in the X population being tested is the current

density in the voxels which has a normal distribution of the

unknown value σ in two different populations of thought tasks

(K2, K3) or (K2, K7) or (K7, K3). At the significance level

of α=0,05, the H0 : m1 = m2 hypothesis was verified as

opposed to the alternative hypotheses H1 : m1 6= m2. The size

of the sample was in each case over 100, therefore unknown

variation can be approximated using S2
1 and S2

2. It is then

visible that the t-statistics has normal distribution N(0.1) and

the u(0.025) and u(0.975) quantiles can be assumed to be -1.96

and +1.96 respectively. The critical set takes the form Tα =
(−∞,−1.96)∪ (1.96,+∞). The t-statistics values calculated

in the experiment are presented in Tab. II.

TABLE II
STATISTICAL VALUES FOR 864 SAMPLES REPRESENTING TESTS

REFERRING TO CLASS K7, K3, K2

(K2, K3) (K2, K7) (K7, K3)
t=-34.9 t=-28.3 t=-10.2

It can, therefore, be assumed that in cases 1), 2) and 3)

m1 6= m2. The conclusion can, therefore, be drawn that in all

the cases the differentiation is very large. It can also be seen

that the differentiation for K2 and K3 is largest.

In order to test the accuracy of the ordering it is also possible

to test the H0 hypothesis against H1 for the subsequent sets

of samples of class K2, K3, K7. Sets of samples in the

whole Idiap database tested are ordered in such a way that

the person tested performed three kinds of tasks requested by

the operator (imagination of repetitive self-paced right hand

movements (class K3), imagination of repetitive self-paced left

hand movements (class K2), generation of words beginning

with the same random letter (class K7)). The person being

examined changes at random to another task requested by the

operator. In the test classes were ordered in the following way:

K7, K3, K2, K3, K7, K2, K7, K3, K2, K7, K3, K7. The results

provided in Tab. II relate to the initial set of classes K7, K3,

K2.

The whole set of samples was tested in a similar way. In

Fig. 6. Example of the visualization of voxel layout for the left and right
hemisphere: a) an example of voxel layout in the case of x<0 (the left
hemisphere), b) an example of voxel layout in the case of x>0 (the right
hemisphere).
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order to calculate approximate values and variances for the

given set of classes, the following formulas were used

x =
1

N

r∑

i=1

xiNi

S2 =
1

N

r∑

i=1

S2
i Ni +

1

N

r∑

i=1

(xi − x)2Ni

where Ni is the size of the given class (i=1,. . . , r),

r – is the number of classes (set of samples),

N = N1 + · · ·+Nr

xi =
1

Ni

Ni∑

j=1

xj

S2
i =

1

Ni

Ni∑

j=1

(xj − xi)
2.

Table III presents the values of t-statistics calculated for the

whole set.

TABLE III
VALUES OF STATISTICS FOR THE WHOLE IDIAP SET CONTAINING

SAMPLES REFERRING TO CLASSES K7, K3, K2

(K2, K3) (K2, K7) (K7, K3)
t=-57.3 t=-25.0 t=-38.4

It can be seen that the differentiation between classes K2

and K3 is largest. This means there are grounds for using one

more test based on [16]. On the basis of testing k samples

numbered N1,. . . , Nk; N1+ · · ·+Nk = N coming from the k
population of unknown mean m1,. . . , mk and the common σ2

variance, it is possible to test the H0: m1 = m2 = · · · = mk

hypothesis (in the experiment being discussed k=3), H1: not

all the mean values are equal.

Let yij =| Ĵj |, where j are the numbers of selected voxels,

i=1, 2,. . . , k are population numbers.

It is possible to conduct Snedecor’s F- test.

F =
R2

1 −R2
0

k
·
N − r

R2
0

(17)

where

R2
1 −R2

0 =
T 2
1

N1
+

T 2
2

N2
+ · · ·+

T 2
k

Nk

−
T 2

N

T = T1 + · · ·+ Tk

N = N1 + · · ·+Nk

R2
0 =

k∑

i=1

(min
mi

∑

j

(yij −mi)
2) =

=

k∑

i=1

(
∑

j

y2ij −
T 2
i

Ni

)

The number of degrees of freedom is µ1 = k − 1 and

µ2 = N − k; in the experiment described k = 3, k−1 = 2. In

the test being conducted it is important to assume a common

variance σ2 where there are no reasons to reject the zero

hypothesis H0 : σ2
1 = σ2

2 = · · · = σ2
k , k ≥ 3. H1: not all

the variances are different (Bartlett’s test). In order to verify

the hypothesis, use was made of statistics, which shows that

with the sample size of Ni ≥ 6 for i=1, 2, . . . , k there is χ2

(chi squared) distribution with (k-1) degrees of freedom.

χ2 =
2.303

c

[
(N − k) log

(∑k

i=1 (Ni − 1)S∗2
i

N − k

)
+

−
1

k

k∑

i=1

(Ni − 1)
k∑

i=1

logS∗2
i

]
(18)

where

yi =
1

Ni

Ni∑

j=1

yij

S∗2
i =

1

Ni − 1

k∑

i=1

(yij − yi)
2 =

Ni

Ni − 1
S2
i

i = 1, 2, . . . , k

N =

k∑

i=1

Ni

c = 1 +
1

3(k − 1)
(

k∑

i=1

1

Ni − 1
−

1

N − k
)

As a result of using the F-statistics test, comparing all the

features includes the whole sample.

V. CONCLUSIONS

The article presents a comparison of algorithms which are

solutions to the inverse problem. Tests were conducted to

compute the relative error and variances for the methods

discussed in the article used when simulating the entering

of data into voxels (arbitrarily recorded random data and

ordered data). The relative error does not exceed 0.15, and the

variance is not larger than 0.16. The variance for the methods

under discussion was also computed, i.e. for the least squares

method, (PINV, SVD, QR) and LORETA when entering data

into electrodes (arbitrarily recorded random data, ordered data

and real Idiap data). The lowest error was obtained for real

processed data (Idiap). It can be assumed that the location

of voxels from which the signals come is only possible on

the basis of processed data. Tests were done on the basis of

which an introductory selection of features was conducted,

i.e. imagining moving one’s left hand, imagining moving

one’s right hand, imagining generating words beginning with

a randomly chosen letter. The differentiation of the features

examined was obtained on the basis of t-statistics. It was

ascertained that the features were generally considerably dif-

ferent, with the greatest differences manifesting themselves in

imagining moving one’s left hand, imagining moving one’s

right hand. Moreover, F-Snedecor’s statistics was discussed.

This method makes it possible to compare the differentiation

of all of the features at the same time. Plans have been

made to use this statistics in future research. The article

also suggests that it is possible to compare features in the

selected areas described using spherical coordinates of the
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points belonging to these areas, as shown in Fig. 6. Besides,

there are plans for improving the effectiveness of calculation

algorithms for inverse methods and developing an authored

algorithm for locating sources, their strength and direction.

Moreover, it is important to focus on increasing the range of

preprocessing, which can significantly improve the accuracy

of algorithms used for solving inverse problems. Appropriate

methods used in preprocessing in connection with choosing

appropriate algorithms can influence the reduction of errors

while locating generators (signal sources).
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