Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper deals with the following problems concerning pseudo-ordered denumerable fields: (i) a connection between Fermat’s two squares theorem and the unique pseudo-order in a finite field; (ii) properties of a proper pseudo-order determined by any prime number in the field of rational numbers; (iii) existence of a proper pseudo-order in every subfield of the sequence used to obtain the field of constructible numbers; (iv) some brief of applications of the latter pseudo-orders to construct new algebraic and geometric structures. In particular, we extend the known construction of finite nearfields or quasifields given by e.g. W. A. Pierce or P. Dembowski – to infinite cases.
Wydawca
Czasopismo
Rocznik
Tom
Strony
247--256
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- University of Warmia and Mazury in Olsztyn, Faculty of Mathematics and Computer Science, 10-710 Olsztyn, Poland
Bibliografia
- [1] L. Carlitz, A theorem on permutations in a finite fields, Proc. Amer. Math. Soc. 11 (1966), 456–459.
- [2] P. Dembowski, Finite Geometries, Springer-Verlag, Berlin-Heidelberg-New York, 1968.
- [3] J. A. Ewell, A simple proof of Fermat’s two squares theorem, Amer. Math. Monthly 90 (1983), 635–637.
- [4] J. Jakóbowski, A new construction for Minkowski planes, Geom. Dedicata 69 (1998), 179–188.
- [5] J. Jakóbowski, A new generalization of Moulton affine planes, Geom. Dedicata 42 (1992), 243–253.
- [6] J. Jakóbowski, Nearaffine planes related to pseudo-ordered fields, Bull. Polish Acad. Sci. Math. 50 (2002), 345–360.
- [7] S. Lang, Algebra, Addison-Wesley Publishing Company, 1970.
- [8] N. Percsy, Finite Minkowski planes in which every circle-symmetry is an automorphism, Geom. Dedicata 10 (1981), 269–282.
- [9] W. A. Pierce, Moulton planes, Canad. J. Math. 13 (1961), 427–436.
- [10] C. R. Videla On the constructible numbers, Proc. Amer. Math. Soc. 127 (1999), 851–860.
- [11] H. A. Wilbrink, Nearaffine planes, Geom. Dedicata 12 (1982), 53–62.
- [12] H. A. Wilbrink, Finite Minkowski planes, Geom. Dedicata 12 (1982), 119–129.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc966ce3-6998-4488-9b8c-8231793c1154