PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Critical analysis of biotechnologies on using resource potential of hydrobionts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydrobionts are considered as highly potential source for bioproduction (including energy carriers and fertilizers) and many biotechnological processes that include hydrobionts, particularly their biomass as a substrate are used in different fields of energy, cosmetology, medicine, pharmaceutics, aquaculture, agriculture, forestry etc. Latest developments prove efficiency in applying anaerobic digestion for purifying wastewaters from organic pollutants with the help of macrophytes and microphytes in conducting biomethanogenesis. Many studies have established that it is possible to reach high level of lipid extraction from algae (to 95%) with the help of organic solvents (methanol, acetone, hexane, diethyl ether etc). Blue – green algae biomass has been scientifically proved to be a good source for methane, methanol, ethanol, propanol, isopropanol, biodiesel and other biofuel types production. Macroalgae and microalgae contain β- carotene, biotin, folic acid, fucoidans, lectins, phenolics, sulphated polysaccharides and other derived biologically active compounds that can be used in producing vitamins, have anti-ulcer, antioxidant, antibiotic, antifouling, immune modulatory and other properties. Cyanidioschyzon merolae, Ostreococcus lucimarinus, O. tauri, Micromonas pusilla have shown high potential for hydrogen production while Rhizoclonium sp. has been experimentally used as a bounding material in briquetting miscanthus granules, resulting in 20 % higher dynamic strength. The article is a literature review and the purpose of this work is to classify and systemize hydrobionts, reveal regularity of their growth, conduct critical analysis on existing biotechnologies on using separate representatives of aquatic biomes as a raw material and also to review ways of intensification for these biotechnologies.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
143--150
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Lviv Polytechnic National University, Viacheslav Chornovil Institute of Sustainable Development, Department of Ecology and Sustainable Environmental Management, S. Bandera str., 12, 79013, Lviv, Ukraine
  • Lviv Polytechnic National University, Viacheslav Chornovil Institute of Sustainable Development, Department of Ecology and Sustainable Environmental Management, S. Bandera str., 12, 79013, Lviv, Ukraine
  • Kremenchuk Mykhailo Ostrohradskiy National University, Kremenchuk, Ukraine
  • Kremenchuk Mykhailo Ostrohradskiy National University, Kremenchuk, Ukraine
Bibliografia
  • ADAMIETZ T., JURKOWSKI W., ADOLPH J., BRÜCK T. 2018. Batch and continuous biogas fermentation of the fresh water algae Chlorella vulgaris – detailed process analysis. Journal of Bioprocessing and Biotechniques. Vol. 8. Iss. 5, 338 pp. 8. DOI 10.4172/2155-9821.1000338.
  • ALASSALI A., CYBULSKA I., BRUDECKI G.P., FARZANAH R., THOMSEN M.H. 2016. Methods for upstream extraction and chemical characterization of secondary metabolites from algae biomass. Advanced Techniques in Biology and Medicine. Vol. 4. Iss. 1, 163 pp. 16. DOI 10.4172/2379-1764.1000163.
  • BOHUTSKYI P., BOUWE E. 2012. Biogas production from algae and cyanobacteria through anaerobic digestion: A review analysis, and research needs. In: Advanced biofuels and bioproducts. Ed. J. Lee p. 873–975. New York. Springer. DOI 10.1007/978-1-4614-3348-4_36.
  • CHAFFEY N. 2014. Raven biology of plants, 8th edn. Annals of Botany. Vol. 113. Iss. 7. p. vii. DOI 10.1093/aob/mcu090.
  • CHENG Y.-S., LABAVITCH J. M., ZHENG YI., VANDERGHEYNST J.S. 2011. The impact of cell wall carbohydrate composition on the chitosan flocculation of Chlorella. Process Biochemistry. Vol. 46 p. 1927–1933. DOI 10.1016/j.procbio.2011.06.021.
  • Commission Directive 93/67/EEC of 20 July 1993 laying down the principles (or assessment of risks to man and the environment of substances notified in accordance with Council Directive 67/548/EEC. OJ 227/9.
  • CRAVOTTO G., BOFFA L., MANTEGNA S., PEREGO P., AVOGADRO M., CINTAS P. 2008. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrasonics Sonochemistry. Vol. 15. Iss. 5 p. 898–902.
  • DA ROS P.C.M., SILVA P.S.C., SILVA-STENICO M.E., FIORE M.F., DE CASTRO H.F. 2013. Assessment of chemical and physicochemical properties of cyanobacterial lipids for biodiesel production. Marine Drugs. Vol. 11. Iss. 7 p. 2365–2381. DOI 10.3390/md11072365.
  • GATAMANENI L.B., ORSAT V., LEFSRUD M. 2018. Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environmental Engineering Research. Vol. 23. Iss. 3 p. 229–241. DOI 10.4491/eer.2017.220.
  • GONZALEZ-DELGADO Á.D., KAFAROV V. 2011. Microalgae based biorefinery: Issues to consider. CT&F – Ciencia, Tecnología y Futuro. Vol. 4. No. 4 p. 5–21.
  • Hielscher undated. Biodiesel from algae using ultrasonication [online]. Teltow. Hielscher Ultrasonics GmbH. [Access 05.05.2019]. Available at: https://www.hielscher.com/algae_extraction_01.htm
  • ISSAEVA A. U., BISHIMBAYEV V. K., ZHUMAGULYEVA A. I. 2018. The effect of Brine on organisms-hydrobionts. IRA International Journal of Applied Sciences. Vol. 11. Iss. 3 p. 30–36. DOI 10.21013/jas.v11.n3.p1.
  • JARQUE S., MASNER P., KLÁNOVÁ J., PROKEŠ R., BLÁHA L. 2016. Bioluminescent Vibrio fischeri assays in the assessment of seasonal and spatial patterns in toxicity of contaminated river sediments. Frontiers in Microbiology. Vol. 7, 1738. DOI 10.3389/fmicb.2016.01738.
  • KARSA G., GÜNDÜZA U., YÜCELA U., TÜRKERB L., EROGLUC I. 2006. Hydrogen production and transcriptional analysis of Nifd, Nifk and hups genes in Rhodobacter sphaeroides O.U.001 grown in media with different concentrations of molybdenum and iron. International Journal of Hydrogen Energy. Vol. 31 p. 1536–1544.
  • LEE A.K. LEWIS D.M., ASHMAN P.J. 2015. Microalgal cell disruption by hydrodynamic cavitation for the production of biofuels. Journal of Applied Phycology. Vol. 27. Iss. 5 p. 1881–1889. DOI 10.1007/s10811-014-0483-3.
  • LI C.L., FANG H.H.P. 2007. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology. Vol. 37 p. 1–39.
  • LI T., XU J., WU H., WANG G., DAI SH., FAN J., HE H., XIANG W. 2016. A saponification method for chlorophyll removal from microalgae biomass as oil feedstock. Marine Drugs. Vol. 14. Iss. 9, 162 pp. 19. DOI 10.3390/md14090162.
  • LYSYTSA A., MATVIENKO N., KOZII M., AISHPUR A. 2017. Influence of polymeric derivatives of guanidine on hydrobionts. Biologija. Vol. 63. No. 3 p. 270–282.
  • MALOVANYY M. S., NYKYFOROV V. V., KHARLAMOVA O. V., SYNELNIKOV O. D. 2015. Mathematical model of the process of synthesis of biogas from blue-green algae. Ecological Safety. Vol. 1. Iss. 19 p. 58–63.
  • MAYFIELD S.P. 2015. Consortium for algal biofuel commercialization (CAB-COMM) Final Report; EE0003373; UC San Diego: La Jolla, CA, USA pp. 69.
  • MAYORAVA A. 2018. The unique biodiversity: 6,900 hydrobionts species were found in Russian Far Eastern basin. https://www.eurekalert.org/pub_releases/2018-11/fefutub111518.php.
  • MORGALEV Y. N., GOSTEVA I. A., MORGALEV S. YU., MORGALEVA T. G., NAZAROV A. A. 2017. Tolerance of hydrobionts to CeO2 nanoparticles. Nano Hybrids and Composites. Vol. 13 p. 211–218. DOI 10.4028/www.scientific.net/NHC.13.211
  • MORGALEVA T. G., MORGALEV Y. N., GOSTEVA I. A., MORGALEV S. Yu. 2017. Range of resistance of hydrobionts to medium contamination with manufactured nanoparticles. Nano Hybrids and Composites. Vol. 13 p. 279–287. DOI 10.4028/www.scientific.net/NHC.13.279.
  • NDUKA O. 2011. Environmental microbiology of aquatic and waste systems. Springer Netherlands. ISBN 978-94-007-1460-1 pp. 324. DOI 10.1007/978-94-007-1460-1.
  • NYKYFOROV V. V., LUGOVOY A. V., YELIZAROV A. I., KOZLOVSKAYA M. O., YELIZAROV N. A. 2011. Nature protection and energy-resource saving technology of green-blue algae utilization in Dnieper reservoirs. Transactions of Kremenchuk Mykhailo Ostrohradskyi National University. Kremenchuk. KrNU. No. 1 (66) p. 115–117.
  • NYKYFOROV V., MALOVANYY M., KOZLOVSKAYA T., NOVOKHATKO O., DIGTIAR S. 2016. The biological ways of bluegreen algae complex processing. Eastern-European Journal of Enterprise Technologies. Vol. 5. No. 10 (83) p. 11–18. DOI 10.15587/1729-4061.2016.79789.
  • ROUND F.E. 1981. The ecology of algae. New York. Cambridge University Press. ISBN 9780521225830 pp. 653.
  • SETYAWAN M., BUDIMAN A., MULYONO P., SUTIJAN 2018. Optimum extraction of algae-oil from microalgae using hydrodynamic cavitation. International Journal of Renewable Research. Vol. 8. No. 1 p. 451–458.
  • SHARMA A., ARYA K.S. 2017. Hydrogen from algal biomass: A review of production process. Biotechnology Reports. Vol. 15 p. 63–69.
  • SHARMA P., SHARMA N. 2017. Industrial and biotechnological applications of algae: A review. Journal of Advances in Plant Biology. Vol. 1. Iss. 1 p. 1–25. DOI 10.14302/issn.2638-4469.japb-17-1534.
  • TAE W.K., JOUNG Y., HAN J-H., JUNG W., KIM S.B. 2015. Antibiotic resistance among aquatic bacteria in natural freshwater environments of Korea. Journal of Water and Health. Vol. 13. Iss. 4 p. 1085–1097. DOI 10.2166/wh.2015.032.
  • THAPA S. JOHNSON D.B., LIU P.P., CANAM T. 2015. Algal biomass as a binding agent for the densification of Miscanthus [online]. Faculty Research and Creative Activity. 278. [Access 11.05.2019]. Available at: https://thekeep.eiu.edu/bio_fac/278
  • WANG Y., SHENG H.-F., HE Y., WU J.-Y., JIANG Y.-X., TAM N.F.-Y., ZHOU H.-W. 2012. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Applied and Environmental Microbiology. Vol. 78. No. 23 p. 8264–8271. DOI 10.1128/AEM.01821-12.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc9410c3-4bef-43df-abf1-0b6a201070f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.