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Abstract. A technique for computing an ILU preconditioner based on the factored approx-
imate inverse (FAPINV) algorithm is presented. We show that this algorithm is well-defined
for H-matrices. Moreover, when used in conjunction with Krylov-subspace-based iterative
solvers such as the GMRES algorithm, results in reliable solvers. Numerical experiments on
some test matrices are given to show the efficiency of the new ILU preconditioner.
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1. INTRODUCTION

Consider the linear system of equations

Ax = b, (1.1)

where the coefficient matrix A ∈ Rn×n is nonsingular, large, sparse and x, b ∈ Rn.
Such linear systems are often solved by Krylov subspace methods such as the GMRES
[28] and the BiCGSTAB [32] methods. In general, the convergence of Krylov subspace
methods is not guaranteed or it may be extremely slow. Hence, the original system
(1.1) is transformed into a more tractable form. More precisely, to obtain good con-
vergence rates, or even to converge, Krylov subspace methods are applied to the left
preconditioned linear system

MAx =Mb,

or to the right preconditioned linear system

AMy = b, x =My,
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where the matrix M is a proper preconditioner. Two-side preconditioning is also
possible [1, 7, 26].

There are two general ideas for constructing a preconditioner. The first one is
to find a matrix G approximating A in some sense and to set M = G−1. In this
case, M should be chosen such that AM (or MA) is a good approximation of the
identity matrix. The best-known general-purpose preconditioners in this class are
those based on the incomplete LU (ILU) factorization of the original matrix. Let
the matrix A admits the LDU factorization A = LDU , where L and UT are lower
unitriangular matrices and D = diag(d1, d2, . . . , dn) is a diagonal matrix. Here G =
L̃D̃Ũ , where L̃ and ŨT are sparse lower unitriangular matrices which approximate L
and UT , respectively, and D̃ is a diagonal matrix which approximates D. The ILU
preconditioners are very effective in increasing the rate of convergence. Their main
drawback is the possibility of breakdowns during the incomplete factorization process,
due to the occurrence of a zero or small pivots (or the appearance of nonpositive pivot
elements for symmetric positive definite (SPD) matrices). In [21], Meijerink and van
der Vorst have shown that this type of preconditioning exists for M-matrices. Then,
Manteuffel in [20] has extended this result to the H-matrices. We recall that the matrix
A = (aij) is an M-matrix if aij ≤ 0 for all i 6= j, A is nonsingular and A−1 ≥ 0.
Moreover, A is an H-matrix if its comparison matrix Â = (âij) is an M-matrix where

âij =

{
−|aij |, i 6= j,

|aii|, i = j.

For general matrices, there are some ways to guard against the appearance of zero
or very small pivots, see for example [8, 14, 23]. Another drawback of the ILU pre-
conditioners is the lack of inherent parallelism. Many researchers have made effort to
improve the accuracy and the degree of parallelism of the ILU preconditioners in the
past [3, 5, 22,25–27,29,30].

The second idea for constructing a preconditioner is to find a matrix M that
directly approximates A−1 (M ≈ A−1). In this case, in practice we do not need to
compute AM (orMA) explicitly, because when Krylov subspace methods are used to
solve a preconditioned system, only the matrix-vector product is required. One draw-
back of many sparse approximate inverse techniques is their high construction cost,
unless the computation can be done efficiently on parallel computers. One approach
in this class is to compute a sparse approximate inverse in the factored form. Here
from LDU factorization A = LDU , we have A−1 = ZD−1W where W = L−1 and
Z = U−1. If G = Z̃D̃W̃ , where W̃ ≈ W, Z̃ ≈ Z, and D̃ ≈ D−1, in which W̃ and
Z̃T are sparse lower unitriangular matrices and D̃ is diagonal matrix, then G may be
used as a preconditioner for system (1.1) and is called a factored sparse approximate
inverse. Here W̃ and Z̃ are called sparse approximate inverse factors of A. There
are several algorithms to compute a factored sparse approximate inverse of a matrix.
Among them are the factorized sparse approximate inverse (FSAI) algorithm [12,13],
the approximate inverse via bordering (AIB) algorithm [26], the approximate inverse
(AINV) technique [4, 6], and the factored approximate inverse (FAPINV) algorithm
[15,17–19,33,34].
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For SPD matrices, there exists a variant of the AINV method, denoted by SAINV
(for Stabilized AINV), that is breakdown-free [2]. This algorithm is also presented,
independently, by Kharchenko et al. in [11]. Benzi and Tuma in [8] have introduced
an ILU factorization based on the SAINV algorithm. In the proposed algorithm
the L factor of LDLT factorization of A can be obtained as a by-product of the
A-orthogonalization process used in the SAINV algorithm, at no extra cost. Rezghi
and Hosseini in [23], have shown that a similar algorithm free from breakdown can
be established for nonsymmetric positive definite matrices.

The main idea of the FAPINV algorithm was introduced by Luo [17–19]. Then
the algorithm was investigated by Zhang in [34]. Since in this procedure the factor-
ization is performed in a backward direction, we call it the BFAPINV (Backward
FAPINV) algorithm. In [33], Zhang proposed an alternative procedure to compute
the factorization in the forward direction, which we call it the FFAPINV (Forward
FAPINV) algorithm. In [15], Lee and Zhang have shown that the BFAPINV algo-
rithm is well-defined for M-matrices. It can be easily seen that this is correct for the
FFAPINV algorithm as well. In [31], Salkuyeh showed that the FFAPINV algorithm
with a simple revision may be used for nonsymmetric positive definite matrices, free
from breakdown.

In this paper, we show that the FFAPINV algorithm is free from breakdown for
H-matrices and we propose a technique for computing an ILU preconditioner based
on the FAPINV algorithm at no extra cost.

This paper is organized as follows. In Section 2, we review the FFAPINV algorithm.
Section 3 is devoted to the main results. Numerical experiments are given in Section 4.
Finally, we give some concluding remarks in Section 5.

2. A REVIEW OF THE FFAPINV ALGORITHM

Let W and ZT be lower unitriangular matrices and D be a diagonal matrix. Also,
suppose that

WAZ = D−1. (2.1)
In this case, we term W,Z and D, the inverse factors of A = (aij). Consider W =
(wT

1 , w
T
2 , . . . , w

T
n )

T , Z = (z1, z2, . . . , zn) and D = diag(d1, d2, . . . , dn), in which wi’s
and zi’s are the rows and columns ofW and Z, respectively. Using Eq. (2.1) we obtain

wiAzj =

{
1
di
, i = j,

0, i 6= j.
(2.2)

From the structure of the matrices W and Z, we have

z1 = e1, zj = ej −
j−1∑

i=1

α
(j)
i zi, j = 2, . . . , n, (2.3)

w1 = eT1 , wj = eTj −
j−1∑

i=1

β
(j)
i wi, j = 2, . . . , n, (2.4)

for some α(j)
i ’s and β(j)

i ’s, where ej is the j-th column of the identity matrix.
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First of all, from (2.2) we see that

d1 =
1

wT
1 Az1

=
1

eT1 Ae1
=

1

a11
.

Now let 2 ≤ j ≤ n be fixed. Then from Eqs. (2.2) and (2.3) and for k = 1, . . . , j − 1,
we have

0 = wkAzj = wkAej −
j−1∑

i=1

α
(j)
i wkAzi = wkA∗j − α(j)

k wkAzk = wkA∗j − α(j)
k

1

dk
,

where A∗j is the j-th column of A. Therefore,

α
(j)
i = diwiA∗j , i = 1, . . . , j − 1.

In the same manner
β
(j)
i = diAj∗zi, i = 1, . . . , j − 1,

where Aj∗ is the j-th row of A. Pre-multiplying both sides of (2.3) by wjA yields

dj =
1

wjA∗j
.

Putting these results together gives the following algorithm (FFINV for Forward
Factored INVerse) for computing the inverse factors of A.

Algorithm 1. FFINV algorithm (vector form)

1. z1 := e1, w1 := eT1 and d1 := 1
a11

2. For j = 2, . . . , n, Do
3. zj := ej ; wj := eTj
4. For i = 1, . . . , j − 1, Do
5. α

(j)
i := diwiA∗j ; β

(j)
i := diAj∗zi

6. zj := zj − α(j)
i zi; wj := wj − β(j)

i wi

7. EndDo
8. dj :=

1
wjA∗j

9. EndDo
10. Return W = [wT

1 , · · · , wT
n ]

T , Z = [z1, · · · , zn] and D = diag(d1, · · · , dn).
Algorithm 1, is the vector form of the FFINV algorithm. It can be easily verified

that this algorithm is equivalent to Algorithm 2 (see [34]). Moreover, the values
of α(j)

i ’s and β
(j)
i ’s are the same in both Algorithms 1 and 2. In this algorithm, we

assume wj = (wj1, wj2, . . . , wjn) and zj = (z1j , z2j , . . . , znj)
T .

Algorithm 2. FFINV algorithm

1. W := In×n, Z := In×n.
2. For j = 1, . . . , n, Do
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3. For i = j − 1, . . . , 1, Do
4. l

(j)
i = aji +

∑i−1
k=1 ajkzki

5. β
(j)
i = l

(j)
i di

6. EndDo
7. For i = 1, . . . , j − 1, Do
8. wji = −β(j)

i −
∑j−1

k=i+1 β
(j)
k wki

9. EndDo,
10. dj = 1/(ajj +

∑j−1
k=1 wjkakj)

11. For i = j − 1, . . . , 1, Do
12. u

(j)
i = aij +

∑i−1
k=1 wikakj

13. α
(j)
i = u

(j)
i di

14. EndDo
15. For i = 1, . . . , j − 1 Do
16. zij = −α(j)

i −
∑j−1

k=i+1 α
(j)
k zik,

17. EndDo
18. EndDo
19. Return W = (wij), Z = (zij) and D = diag(d1, · · · , dn).

This algorithm computes the inverse factorsW,Z and D such that Eq. (2.1) holds.
Therefore, we have A−1 = ZDW . This shows that the inverse of A in the factored form
can be computed by this algorithm. A sparse approximate inverse of A is computed by
inserting some dropping strategies (replacing small values in absolute value by zero)
in Algorithm 2. A dropping strategy can be used as follows. The dropping strategy
is applied in four places in the algorithm. In step 5, if | β(j)

i | < τ , then β
(j)
i := 0,

and in step 8, if |wji| < τ , then wji := 0. In the same way α(j)
i in step 13 and zij in

step 16 are dropped when their absolute values are less than tolerance τ . Hereafter,
the FFAPINV algorithm refers to the FFINV algorithm with this type of dropping.
Here we mention that the dropping strategy proposed in [33] is slightly different from
our dropping strategy. In the next section, we show that the FFAPINV algorithm is
well-defined for H-matrices.

3. EXISTENCE OF FFAPINV ALGORITHM FOR H-MATRICES

First we state the following theorem.

Theorem 3.1. Assume that A is an M-matrix. Let W and Z be the inverse factors of
A computed by the FFINV algorithm, i.e. WAZ = D−1. Also suppose that Ŵ and Ẑ
be the inverse factors of A computed by the FFAPINV algorithm, i.e. ŴAẐ ≈ D̂−1.
Then

W ≥ Ŵ ≥ 0, Z ≥ Ẑ ≥ 0,

1

dj
≥ 1

d̂j
> 0, j = 1, 2, . . . , n,

where D̃ = diag(d̃1, . . . , d̃n).
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Proof. The proof of this theorem is quite similar to Proposition 2.2 in [15] and is
omitted here.

This theorem shows that the FFAPINV algorithm is well-defined for M-matrices.
We mention that this is correct for the BFAPINV algorithm, as well (see [15]).

Theorem 3.2. Let A be an H-matrix and Â be its comparison matrix. Let also
A−1 = ZDW and Â−1 = ẐD̂Ŵ be the computed inverse in the factored form by the
FFINV algorithm for A and Â, respectively. Then

∣∣∣ 1
di

∣∣∣ ≥ 1

d̂i
> 0.

Proof. The elements wjl and zlj may be assumed as rational functions

wjl = Fjl(a11, . . . , aj−1,n, d1, . . . , dj−1),

zlj = Glj(a11, . . . , an,j−1, d1, . . . , dj−1).

In fact, wjl (zlj) is a rational function of the first j− 1 columns (j− 1 rows) of A and
the first j − 1 diagonal entries of D. In the same way, ŵjl (ẑlj) is a rational function
Fjl (Glj) of the first j−1 columns (j−1 rows) of Â and the first j−1 diagonal entries
of D̂. Let us also assume that

w̃jl = Fjl(â11, . . . , âj−1,n, |d1|, . . . , |dj−1|),
z̃lj = Glj(â11, . . . , ân,j−1, |d1|, . . . , |dj−1|).

This means that w̃jl and z̃lj are computed similarly to ŵjl and ẑlj , with |d1|, . . . , |dj−1|
instead of d1, . . . , dj−1. By induction, we prove that





a) | 1dk
| ≥ 1

d̂k
,

b) ŵkt ≥ w̃kt ≥ 0,

c) l̂
(k)
t ≤ l̃(k)t ≤ 0,

d) ẑtk ≥ z̃tk ≥ 0,

e) û
(k)
t ≤ ũ(k)t ≤ 0,

(3.1)

for k = 1, . . . , n and t ≤ k − 1. Note that l̂(k)t , l̃(k)t , ũ(k)t and û(k)t are defined similarly
to ŵjl and w̃jl. For k = 1, there is nothing to prove. Now, let all of these relations
hold for every k ≤ j−1. We show that all of them are correct for k = j, as well. From
step 4 of Algorithm 2, for every t ≤ j − 1, we have

l̂
(j)
t = âjt +

t−1∑

i=1

âjiẑit.

From the hypothesis for every t ≤ j − 1, we have ẑit ≥ z̃it ≥ 0. Therefore,

l̂
(j)
t = âjt +

∑t−1
i=1 âjiẑit ≤ âjt +

∑t−1
i=1 âjiz̃it = l̃

(j)
t ≤ 0. (3.2)
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Also, from steps 7–9 of Algorithm 2, we have

ŵjt = −l̂(j)t d̂t −
j−1∑

i=t+1

l̂
(j)
i d̂iŵit, t = 1, . . . , j − 1.

From (3.2) and the hypothesis, for every k ≤ j − 1, we have

d̂k ≥ |dk| ≥ 0⇒ −l̂(j)k d̂k ≥ −l̃(j)k |dk|,
ŵkt ≥ w̃kt ≥ 0⇒ −l̂(j)k d̂kŵkt ≥ −l̃(j)k |dk|w̃kt, t < k.

Hence, we conclude that

ŵjt = −l̂(j)t d̂t −
j−1∑

i=t+1

l̂
(j)
i d̂iŵit ≥ −l̃(j)t |dt| −

j−1∑

i=t+1

l̃
(j)
i |di|w̃it = w̃jt ≥ 0.

In the same way, it can be verified that

û
(j)
t = âtj +

t−1∑

i=1

âijŵti ≤ âtj +
t−1∑

i=1

âijw̃tj = ũ
(j)
t ≤ 0,

ẑtj = −û(j)t d̂t −
j−1∑

i=t+1

û
(j)
i d̂iẑti ≥ −ũ(j)t |dt| −

j−1∑

i=t+1

ũ
(j)
i |di|z̃ti = z̃jt ≥ 0.

Now, we consider two cases ajj > 0 and ajj < 0. If ajj > 0, then from ŵjt ≥ w̃jt ≥ 0
and âtj ≤ 0, we conclude that

1

d̂j
= âjj +

j−1∑

t=1

âtjŵjt ≤ âjj +
j−1∑

t=1

âtjw̃jt.

Consider the polynomials of wjt and w̃jt. It is easy to see that the corresponding terms
of these polynomials have the same absolute values. In other words, they may differ
only by the sign. On the other hand, every term of

∑j−1
t=1 âtjw̃jt, when considered as

a polynomial in elements of Â, is nonpositive, since all terms of w̃ are nonnegative.
Therefore, it is less than or equal to

∑j−1
t=1 atjwjt. Since, it is enough that one of its

terms to be nonnegative. Putting these results together indicates that

1

d̂j
≤ âjj +

j−1∑

t=1

âtjw̃jt ≤ ajj +
j−1∑

t=1

atjwjt =
1

dj
. (3.3)

If ajj < 0, then from ŵjt ≥ w̃jt ≥ 0 and âtj ≤ 0, we have

− 1

d̂j
= −âjj −

j−1∑

t=1

âtjŵjt ≥ −âjj −
j−1∑

t=1

âtjw̃jt.
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Similar to the case ajj > 0, one can conclude that

− 1

d̂j
≥ −âjj −

j−1∑

t=1

âtjw̃jt ≥ −âjj +
j−1∑

t=1

atjwjt = ajj +

j−1∑

t=1

atjwjt =
1

dj
. (3.4)

Now from Eqs. (3.3) and (3.4), we have
∣∣∣ 1
dj

∣∣∣ ≥ 1

d̂j
.

This together with Theorem 3.1 gives the desired result.

Theorem 3.3. Let A be a H-matrix and Â be its comparison matrix. Let also
A−1 ≈ ZDW and Â−1 ≈ ẐD̂Ŵ be the factored approximate inverse computed by
the FFAPINV algorithm for A and Â, respectively. Then

∣∣∣ 1
di

∣∣∣ ≥ 1

d̂i
> 0.

Proof. The proof is quite similar to the proof of the previous theorem. Indeed, the
proof can be done by induction and noting that all of the inequalities have been
obtained by comparing both sides of the inequalities term-by-term.

From this theorem, the following corollary can be easily concluded.

Corollary 3.4. Let A be an H-matrix and D = diag(d1, . . . , dn) be the diagonal
matrix computed by Algorithm 1. Then, the sign of ajj and dj are the same.

4. AN ILU PRECONDITIONER BASED ON THE FFAPINV ALGORITHM

Let W and Z be the inverse factors of A in Eq. (2.1). Also suppose that L := W−1

and U := Z−1. It is easy to verify that A = LD−1U is the LDU factorization of A
and for i ≤ j

Lji = β
(j)
i , Uij = α

(j)
i ,

in which α(j)
i and β(j)

i are computed in steps 5 and 13 of Algorithm 2. By the above
discussion we propose the next algorithm that computes an ILU factorization of A as
a by-product of the FFAPINV process. We term this algorithm ILUFF (refer to an
ILU preconditioning based on the FFAPINV algorithm). The algorithm is as follows:

Algorithm 3. ILUFF algorithm

1. Set L = U = In×n, z1 := e1, w1 := eT1 and d1 := 1
a11

2. For j = 2, . . . , n, Do
3. zj := ej ; wj := eTj
4. For i = 1, . . . , j − 1, Do
5. Uij := diwiA∗j
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6. If |Uij | > τ , then zj := zj − Uijzi
7. Drop entries of zj whose absolute values are smaller than τ
8. EndDo
9. For i = 1, . . . , j − 1, Do
10. Lji := diAj∗zi
11. If |Lji| > τ , then wj := wj − Ljiwi

12. Drop entries of wj whose absolute values are smaller than τ
13. EndDo
14. dj :=

1
wjA∗j

15. EndDo
16. Return L = (Lji), U = (Uij) and D = diag(d1, d2, . . . , dn) (A ≈ LD−1U)

Some consideration can be given here. Obviously, when the matrix A is symmetric
then W = ZT and the computations will be halved. In the case that the matrix A is
symmetric positive definite then we have

dj =
1

zTj Azj
> 0,

and the algorithm is free from breakdown. This is true for nonsymmetric positive
definite matrices, as well (see [31]). Therefore, if the matrix A is positive definite
(symmetric or nonsymmetric) then we can use

dj :=
1

zTj Azj
,

in step 14 of Algorithm 3.

5. NUMERICAL EXPERIMENTS

In this section, we have used the ILUFF as the right preconditioner to solve the linear
system of equations (1.1) with GMRES(50) method. The ILUFF code is written in
Fortran 77. But the GMRES(50) code in the Sparskit package [24] has been used. In
the first part of the numerical experiments we used 38 nonsymmetric test matrices.
All of these matrices have been taken from the University of Florida Sparse Matrix
Collection [9] and none of them are positive definite. In all the experiments whenever
a zero pivot has occurred, then we have replaced the zero by the square root of the
machine precision. The machine, we used for the experiments, has one quad Intel(R)
CPU and 8GB of RAM memory. The initial guess for the iterative solver was always
a zero vector. The stopping criterion used was

‖rk‖2
‖r0‖2

< 10−10, (5.1)

where rk is the residual of the unpreconditioned system in the kth iterate. We have
considered the exact solution as the vector e = (1, · · · , 1)T and the vector b = Ae.
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We have used the Multilevel Nested Dissection reordering as a preprocessing [10]. To
implement theILUFF algorithm, it is clear that matrix A should be accessed row-wise
and column-wise. In our implementations, we have used just the Compressed Sparse
Row (CSR) format of storage [26] to traverse A row-wise. For the column-wise traverse
of A, we have used the linked lists [16].

In Table 1, properties of test matrices and the convergence results of the GM-
RES(50) method without preconditioning have been reported. In this table, n and
nnz are the dimension and the number of nonzero entries of the matrix, respectively.
Its stands for the number of iterations and Time is the iteration time which has
been computed by the dtime command. The times are in seconds. In this table, a +
symbol means that the stopping criterion has not been satisfied after 10,000 number
of iterations.

Table 2, includes properties of the ILUFF preconditioner and the results of a right
preconditioned GMRES(50). Considering Algorithm 3, τ is the tolerance parameter
to drop entries of L,U andW,Z factors. In this table, the parameter τ has been set to
0.1 for all the test matrices. Suppose that nnz(A), nnz(L) and nnz(U) are the number
of nonzero entries of matrix A and L and U factors of the ILUFF preconditioner. In
the implementation of the ILUFF preconditioner, we have merged the D factor into
the U factor. Therefore, parameter density in Table 2, is defined as:

density =
nnz(L) + nnz(U)

nnz(A)
.

In this table, Ptime stands for the preconditioning time and It−Time is the iteration
time to solve the preconditioned system. Ttime is defined as the sum of Ptime and
It − Time. In this table, Its is the number of iterations of GMRES(50) to solve the
right preconditioned system. Numerical results presented in Table 2, show that the
proposed preconditioner greatly reduces the time and iterations for convergence.

For the second part of the numerical experiments we consider the matrix
atmosmodj. This matrix belongs to the Bourchtein Group of matrix collections [9].
Dimension of this matrix is 1, 270, 432 and it has 8, 814, 880 number of nonzero entries.
Consider system (1.1) when the coefficient matrix is atmosmodj. Also suppose that
b = Ae in which e = (1, · · · , 1)T is the exact solution. We term this artificial system
as the atmosmodj system. Without preconditioning, GMRES(50) method for this
system converges in 1312 number of iterations in about 447.66 seconds. In Table 3,
we have reported the results of thr ILUFF preconditioner and the right preconditioned
GMRES(50) method for this system. In this table, density, Ptime, It−Time, Ttime
and Its have the same meaning as in Table 2. All the Ttime and Its in this table are
less than numbers 447.66 and 1312, respectively.

In Figure 1, we have drawn four graphs related to the atmosmodj system. In this
figure, we take an in-depth look at the results of Table 3. The graph with solid line
is devoted to the case that GMRES(50) method without preconditioning is applied
to solve the atmosmodj system. This graph gives the logarithm of the fraction ‖rk‖2‖r0‖2
for each iterate of GMRES(50). The three other graphs, illustrated by the dashed,
dotted and dashed-dotted lines, give the above mentioned logarithm for each iterate
xk of the right preconditioned GMRES(50) method.
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Table 1. Test matrices properties together with results of GMRES(50) without
preconditioning

Group/Matrix n nnz Time Its
HB/fs_ 183_ 1 183 998 0.00 38
HB/fs_ 183_ 6 183 1000 0.01 36
Simon/raefsky1 3242 293 409 2.76 3588
Simon/raefsky2 3242 293 551 3.65 4790
Simon/raefsky5 6316 167 178 0.24 306
Simon/raefsky6 3402 130 371 0.68 1385
Muite/Chebyshev3 4101 36 879 + +
Oberwolfach/flowmeter5 9669 67 391 + +
Rajat/rajat03 7602 32 653 + +
HB/sherman3 5005 20 033 + +
Hamm/memplus 17 758 99 147 7.22 3878
FEMLAB/poisson3Da 13 514 352 762 0.86 342
Botonakis/FEM_ 3D_ thermal1 17 880 430 740 0.88 283
FEMLAB/poisson3Db 13 514 352 762 12.98 620
Oberwolfach/chipcool0 20 082 281 150 + +
Oberwolfach/chipcool1 20 082 281 150 + +
Averous/epb1 14 734 95 053 2.08 1432
Averous/epb2 25 228 175 028 2.81 908
Wang/wang3 26 064 177 168 2.34 803
Wang/wang4 26 068 177 196 + +
IBM_ Austin/coupled 11 341 97 193 + +
Simon/venkat01 62 424 1 717 792 + +
Sandia/ASIC_ 100ks 99 190 578 890 23.85 1887
Hamm/hcircuit 105 676 513 072 + +
Norris/lung2 109 460 492 564 + +
IBM_ EDA/dc1 116 835 766 396 + +
IBM_ EDA/dc2 116 835 766 396 + +
IBM_ EDA/dc3 116 835 766 396 + +
IBM_ EDA/trans4 116 835 749 800 + +
IBM_ EDA/trans5 116 835 749 800 + +
Botonakis/FEM_ 3D_ thermal2 147 900 3 489 300 18.32 652
QLi/crashbasis 160 000 1 750 416 10.09 437
FEMLAB/stomach 213 360 3 021 648 11.64 344
Sandia/ASIC_ 320ks 321 671 1 316 085 10.39 201
Sandia/ASIC_ 680ks 682 712 1 693 767 13.72 84
Bourchtein/atmosmodd 1 270 432 8 814 880 241.92 707
Bourchtein/atmosmodl 1 489 752 10 319 760 166.14 415
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Table 2. Properties of ILUFF preconditioner with τ = 0.1 and right preconditioned
GMRES(50) method

Matrix density Ptime It-Time Ttime Its
fs_ 183_ 1 0.55 0.81 0.00 0.81 10
fs_ 183_ 6 0.54 0.73 0.00 0.73 10
raefsky1 0.05 0.75 1.03 1.78 1092
raefsky2 0.08 0.75 1.45 2.20 1419
raefsky5 0.20 0.75 0.01 0.76 11
raefsky6 0.15 0.75 0.01 0.76 12
Chebyshev3 0.33 0.75 0.09 0.84 245
flowmeter5 0.74 0.76 2.37 3.13 2106
rajat03 0.78 0.82 0.25 1.07 390
sherman3 0.83 0.73 0.82 1.55 1747
memplus 0.39 0.77 0.89 1.66 376
poisson3Da 0.18 0.75 0.55 1.30 180
FEM_ 3D_ thermal1 0.22 0.76 0.23 0.99 53
poisson3Db 0.18 1.06 9.40 10.46 395
chipcool0 0.35 0.78 1.22 2.00 321
chipcool1 0.35 0.75 1.70 2.45 446
epb1 0.78 0.73 1.11 1.84 547
epb2 0.57 0.75 0.83 1.58 209
wang3 0.85 0.76 0.84 1.60 201
wang4 0.55 0.80 1.13 1.93 279
coupled 0.48 0.81 0.21 1.02 149
venkat01 0.34 1.07 1.67 2.74 90
ASIC_ 100ks 0.79 1.01 0.35 1.36 23
hcircuit 0.76 0.99 8.95 9.94 513
lung2 1.03 1.00 5.67 6.67 304
dc1 0.65 35.26 4.75 40.01 234
dc2 0.64 34.06 2.97 37.03 143
dc3 0.64 33.75 8.64 42.39 451
trans4 0.62 21.95 2.36 24.31 128
trans5 0.63 21.80 7.52 29.32 397
FEM_ 3D_ thermal2 0.22 1.19 1.41 2.60 41
crashbasis 0.58 1.19 1.82 3.01 59
stomach 0.22 1.26 2.79 4.05 72
ASIC_ 320ks 0.66 1.45 4.02 5.47 71
ASIC_ 680ks 0.61 1.97 0.68 2.65 6
Bourchtein/atmosmodd 0.64 4.02 200.66 204.68 503
Bourchtein/atmosmodl 0.84 5.14 100.32 105.46 209
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Table 3. Properties of ILUFF preconditioner and right preconditioned GMRES(50)
for the matrix atmosmodj

τ density Ptime It-Time Ttime Its
0.1 0.64 4.04 240.81 244.85 603
0.05 0.76 4.42 232.66 237.08 561
0.01 1.04 5.17 198.06 203.23 464
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Fig. 1. Effect of different drop parameters for the ILUFF preconditioner
of the atmosmodj system

For these three graphs, the right preconditioner is the ILUFF and has been computed
with τ equal to 0.1, 0.05 and 0.01. The shape of the graphs first indicates that the
ILUFF preconditioner is a good tool to decrease the number of iterations of the
GMRES(50) method, applied for the atmosmodj system. It also shows the fact that
the parameter τ gives the better quality of ILUFF preconditioner for the atmosmodj
system.

6. CONCLUSION

In this paper, we have proposed an ILU preconditioner based on the Forward FAP-
INV algorithm say ILUFF which is free from breakdown for nonsymmetric positive
definite and H-matrices. Numerical results presented in this paper show that the new
preconditioner is very robust and effective.
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