Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Today intramedullary locked nails are widespread in treatment of diaphyseal long bone fractures of the lower limb. However, such nails have a number of drawbacks: complexity and duration of the installation, high axial stiffness, as well as the failure of locking screws and nail body. Expandable nails such as Fixion have several advantages over lockable ones. They can be quickly installed without the need of reaming and provide sufficient stabilization of the fracture. However, many studies show their low stability under torsional loads. Methods: In this paper, geometric characteristics of Fixion nail were investigated. Bone-nail systems (with Fixion and locked nail) under the influence of three types of loads were numerically studied. Two types of diaphyseal femoral fractures (type A and B in accordance with AO/ASIF classification) were examined. Results: It was revealed that Fixion nail provides axial stiffness of 489 N/mm for the fractures studied. Expandable nail showed higher compression at fragments junction than locked nail. Torsional stability of Fixion nail was also high. Corrosion was found on inner surface of Fixion nail. Conclusions: Fixion nail showed high stability under influence of the three loads studied. Corrosion on the internal wall of the nail may indicate its relatively low resistance to saline.
Czasopismo
Rocznik
Tom
Strony
73--81
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Saratov State University, Saratov, Russia
autor
- Saratov Scientific Research Institute of Traumatology and Orthopedics, Saratov, Russia
autor
- Saratov Scientific Research Institute of Traumatology and Orthopedics, Saratov, Russia
Bibliografia
- [1]. Alho A., Benterud J.G., Høgevold H.E., Ekeland A., Strømsøe K. Comparison of functional bracing and locked intramedullary nailing in the treatment of displaced tibial shaft fractures. Clin Orthop Relat Res. 1992, vol. 277, 243–250.
- [2]. Barabash A.P., Barabash Yu A. Fixion intramedullary fixation system in treatment of fractures, pseudoarthroses of long bones. Genius of orthopedics. 2010; vol. 2, 44-49 (in Russian).
- [3]. Blomquist J., Lundberg O.J., Gjerdet N.R., Mølster A. Are Inflatable Nails an Alternative to Interlocked Nails in Tibial Fractures? Clin Orthop Relat Res. 2008, vol. 466, 1225–1231.
- [4]. Bougherara H., Zdero R., Mahboob Z., Dubov A., Shah S., Schemitsch E.H. The biomechanics of a validated finite element model of stress shielding in a novel hybrid total knee replacement. Proc Inst Mech Eng H. 2010, vol. 224(10), 1209-1219.
- [5]. Bougherara H., Zdero R., Miric M., Shah S., Hardisty M., Zalzal P., Schemitsch E.H. The biomechanics of the T2 femoral nailing system: a comparison of synthetic femurs with finite element analysis. Proc Inst Mech Eng H. 2009, vol. 223(3), 303-314.
- [6]. Celik A., Kovac H., Saka G., Kaymaz I. Numerical investigation of mechanical effects caused by various fixation positions on a new radius intramedullary nail. Comput Methods Biomech Biomed Engin. 2015, vol. 18(3), 316-324.
- [7]. Cheung G., Zalzal P., Bhandari M., Spelt J.K., Papini M. Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading. Med Eng Phys, 2004, vol. 26(2), 93-108.
- [8]. Cowin S.C. Bone mechanics handbook. 2nd Edition. CRC Press; 2001. 980 p.
- [9]. Efstathopoulos N., Nikolaou V.S., Xypnitos F.N., Korres D., Lazarettos I., Panousis K., Kasselouris E.N., Venetsanos D.T., Provatidis C.G. Investigation on the distal screw of a trochanteric intramedullary implant (Fi-nail) using a simplified finite element model. Injury. 2010, vol. 41(3), 259-265.
- [10]. Hooper G.J., Keddell R.G., Penny I.D. Conservative management or closed nailing for tibial shaft fractures. A randomized prospective trial. J Bone Joint Surg (Br). 1991, vol. 73(1), 83–85.
- [11]. Ingrassia T., Mancuso A. Virtual prototyping of a new intramedullary nail for tibial fractures. Int J Interact Des Manuf. 2012, vol. 7(3), 159-169.
- [12]. Kajzer A., Kajzer W., Marciniak J. Expandable intramedullary nail – experimental biomechanical evaluation. ASME. 2010, vol. 41(1), 45-52.
- [13]. Kajzer W., Kajzer A., Marciniak J. FEM analysis of expandable intramedullary nails in healthy and osteoporotic femur. JAMME. 2009, vol. 37(2), 563-570.
- [14]. Kapoor S.K., Kataria H., Boruah T., Patra S.R., Chaudhry A., Kapoor S. Expandable selflocking nail in the management of closed diaphyseal fractures of femur and tibia. Indian J Orthop. 2009, vol. 43, 264-270.
- [15]. Lepore L., Lepore S., Maffuli N. Intramedullary nailing of the femur with an inflatable selflocking nail: comparison with locked nailing. J Orthop Sci. 2003, vol. 8(6), 796–801.
- [16]. Maher S.A., Meyers K., Borens O., Suk M., Grose A., Wright T.M., Helfet D. Biomechanical evaluation of an expandable nail for the fixation of midshaft fractures. J Trauma. 2007, vol. 63(1), 103-107.
- [17]. Mallick E., Hazarika S., Assad S., Scott M. The Fixion nailing system for stabilising diaphyseal fractures of the humerus: A two-year clinical experience. Acta Orthop Belg 2008, vol. 74, 308-316.
- [18]. Narain S., Dave P.K., Shah S.N., Ganai M., Singh S., Singh A. A Comparative Study of Intramedullary Expandable Nail and Interlocking Nail in Tibial, Femoral & Humeral Shaft Fractures: A Prospective and Retrospective Study. JIMSA. 2011, vol. 24(1), 15-16.
- [19]. Nikodem A., Scigała K. Impact of some external factors on the values of mechanical parameters determined in tests on bone tissue. Acta Bioeng Biomech. 2010, vol. 12(3), 85- 93.
- [20]. Oliveira M.L., Lemon M.A., Mears S.C., Dinah A.F., Waites M.D., Knight T.A., Belkoff S.M. Biomechanical comparison of expandable and locked intramedullary femoral nails. J Orthop Trauma. 2008, vol. 22(7), 446-450.
- [21]. Papini M., Zdero R., Schemitsch E.H., Zalzal P. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. J Biomech Eng. 2007, vol. 129(1), 12-19.
- [22]. Rose D.M., Smith T.O., Nielsen D., Hing C.B. Expandable intramedullary nails in lower limb trauma: a systematic review of clinical and radiological outcomes. Strat Traum Limb Recon. 2013, vol. 8, 1–12.
- [23]. Samiezadeh S., Tavakkoli Avval P., Fawaz Z., Bougherara H. Biomechanical assessment of composite versus metallic intramedullary nailing system in femoral shaft fractures: A finite element study. Clin Biomech, 2014, vol. 29(7), 803-810.
- [24]. Siegel H.J., Sessions W., Mark A., Casillas Jr. Stabilization of Pathologic Long Bone Fractures With the Fixion Expandable Nail. Orthopedics. 2008, vol. 31(2), 143-148.
- [25]. Stephens R.I., Fatemi A., Stephens R.R., Fuchs H.O. Metal Fatigue in Engineering. 2nd edition. 2000. Wiley, 496 p.
- [26]. Turner C.H., Rho J., Takano Y., Tsui T.Y., Pharr G.M. The elastic properties of trabecular and cortical bone tissues are similar: Results from two microscopic measurement techniques. J Biomech, 1999, vol. 32(4), 437-441.
- [27]. Wang G., Pan T., Peng X., Wang J. A new intramedullary nailing device for the treatment of femoral shaft fractures: a biomechanical study. Clin Biomech (Bristol, Avon). 2008, vol. 23(3), 305-312.
- [28]. Zysset P.K., Guo X.E., Hoffler C.E., Moore K.E., Goldstein S.A. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech, 1999, vol. 32(10), 1005-1012.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc8f569f-2846-4976-bb2e-823ce3c46f98