PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development Of Multistitched Three-Dimensional (3D) Nanocomposite And Evaluation Of Its Mechanical And Impact Properties

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Multistitched three-dimensional (3D) woven E-glass/polyester/nanosilica composite (MNS) was developed. Its mechanical and impact performances were characterized for particular end-use applications. It was found that the warp-weft directional tensile strength and modulus of MNS structure were higher than those of the off-axis directions. In addition, there was not a big difference between warp and weft directional bending and short beam strengths of MNS structure. The MNS structure had a small damaged area under low velocity impact load. The failure was confined at a narrow area because of multistitching and nanomaterial and resulted in the catastrophic fiber breakages in the normal direction of the applied load of the structure. The results from the study indicated that the multistitching and the addition of nanosilica in the composite structure improved its damage tolerance.
Rocznik
Strony
238--249
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
  • Erciyes University, Engineering Faculty, Department of Textile Engineering, 38039 Talas-Kayseri, Turkey
autor
  • Gaziantep University, Vocational School of Technical Sciences, Department of Textile Technology, 27310 Sehitkamil-Gaziantep, Turkey
autor
  • Kahramanmaras Sutcu Imam University, Faculty of Engineering and Architecture, Department of Textile Engineering, 46100 Kahramanmaras, Turkey
Bibliografia
  • [1] Dow, M. B., Dexter, H. B. (1997). Development of Stitched, Braided and Woven Composite Structures in the ACT Program at Langley Research Centre (1985 to 1997). National Aeronautics and Space Administration Technical Publication No. 97-206234, Langley Research Center, Hampton, Virginia.
  • [2] Kamiya, R., Cheeseman, B. A., Popper, P., Chou, T. W. (2000). Some recent advances in the fabrication and design of three dimensional textile preforms: A review. Composite Science and Technology, 60(1), 33-47.
  • [3] Bilisik, K., Yilmaz, B. (2012). Multiaxis multilayered noninterlaced/ non-z E-glass/polyester preform and analysis of tensile properties of composite structures by statistical model, Textile Research Journal, 82(4), 336-351.
  • [4] Kang, T. J., Lee, S. H. (1994). Effect of stitching on the mechanical and impact properties of woven laminate composite, Journal of Composite Materials, 28(16), 1574-1587.
  • [5] Wu, E., Wang, J. (1995). Behavior of stitched laminates under in-plane tensile and transverse impact loading, Journal of Composite Materials, 29(17), 2254-2279.
  • [6] Dickinson, L. C., Farley, G. L., Hinders, M. K. (1999). Prediction of effective three-dimensional elastic constants of translaminar reinforced composites, Journal of Composite Materials, 33(11), 1002-1029.
  • [7] Tan, K. T., Watanabe, N., Iwahori, Y. (2012). Impact damage resistance, response and mechanisms of laminated composites reinforced by through-thickness stitching, International Journal of Damage Mechanics, vol. 21(1), 51-80.
  • [8] Bilisik, K. (2010). Multiaxis 3D woven preform and properties of multiaxis 3D woven and 3D orthogonal woven carbon/epoxy composites, Journal of Reinforced Plastics and Composites, 29(8), 1173-1186.
  • [9] Mohamed, M. H., Bilisik, A. (1995). Multilayered 3D fabric and method for producing, US Patent 5465760.
  • [10] Wichmann, M.H.G., Sumfleth, J., Gojny, F.H., Quaresimin, M., Fiedler, B., Schulte, K. (2006). Glass-fibre-reinforced composites with enhanced mechanical and electrical properties - Benefits and limitations of a nanoparticle modified matrix, Engineering Fracture Mechanics, 73(16), 2346-2351.
  • [11] Greef, N.D., Gorbatikh, L., Lomov, S.V., Verpoest, I. (2011). Damage development in woven carbon fiber/epoxy composites modified with carbon nanotubes under tension in the bias direction, Composites Part A: Applied Science and Manufacturing, 42(11), 1635-1645.
  • [12] Thostenson, E.T., Li, C., Chou, T.W. (2005). Nanocomposites in context, Composites Science and Technology, vol. 65(3-4), 491-516.
  • [13] Wang, H.W., Zhou, H.W., Peng, R.D., Mishnaevsky, L. (2011). Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept, Composites Science and Technology, 71(7), 980-990.
  • [14] Yong, V., Hahn, H.T. (2004). Processing and properties of SiC/vinyl ester nanocomposites, Nanotechnolgy, 15(9), 1338-1343.
  • [15] Patnaik, A., Satapathy, A., Mahapatra, S.S., Dash, R.R. (2009). A Comparative Study on Different Ceramic Fillers Affecting Mechanical Properties of Glass- Polyester Composites, Journal of Reinforced Plastics and Composites, 28(11), 1305-1318.
  • [16] Davis, D. C., Wilkerson, J. W., Zhu, J., Hadjiev, V.G. (2011). A strategy for improving mechanical properties of a fiber reinforced epoxy composite using functionalized carbon nanotubes, Composites Science and Technology, 71(8), 1089-1095.
  • [17] Zhu, J., Imam, A., Crane, R., Lozano, K., Khabashesku, V.N., Barrera, E.V. (2007). Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength, Composites Science and Technology, vol. 67(7-8), 1509-1515.
  • [18] Seyhan, A.T., Gojny, F.H., Tanoglu, M., Schulte, K. (2007). Critical aspects related to processing of carbon nanotube/ unsaturated thermoset polyester nanocomposites, European Polymer Journal, 43(2), 374-383.
  • [19] Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Schulte, K. (2005). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-A comparative study, Composites Science and Technology, vol. 65(15-16), 2300-2308.
  • [20] Velmurugan, R., Solaimurugan, S. (2007). Improvements in Mode I Interlaminar Fracture Toughness and In-Plane Mechanical Properties of Stitched Glass/Polyester Composites, Composites Science and Technology, vol. 67(1), 61-69.
  • [21] Mouritz, A.P., Gallagher, J., Goodwin, A.A. (1997). Flexural and Interlaminar Shear Strength of Stitched GRP Laminates Following Repeated Impacts, Composites Science and Technology, 57(5), 509-522.
  • [22] Mouritz, A.P. (1996). Flexural Properties of Stitched GRP Laminates, Composites, 27A, 525-530.
  • [23] Zhao, N., Rodel, H., Herzberg, C., Gao, S.L. and Krzywinsky, S. (2009). Stitched Glass/PP Composite Part I: Tensile and Impact Properties, Composites Part A: Applied Science and Manufacturing, 40(5), 635-643.
  • [24] Mouritz, A.P. (2001). Ballistic Impact and Explosive Blast Resistance of Stitched Composites, Composites Part B: Engineering, 32(4), 431-439.
  • [25] Dransfield, K.A., Jain, L.K., Mai, Y.W. (1998). On the Effects of Stitching in CFRPS-I: Mode I Delamination Toughness, Composites Science and Technology, 58(6), 815-827.
  • [26] Trabelsi, W., Michel, L., Othomene, R. (2010). Effects of Stitching on Delamination of Satin Weave Carbon-Epoxy Laminates under Mode I, Mode II And Mixed-Mode I/II Loadings, Applied Composite Materials, 17(6), 575-595.
  • [27] Sankar, B.V., Sharma, S.K. (1997). Mode II Delamination Toughness of Stitched Graphite/Epoxy Textile Composites, Composites Science and Technology, 57(7), 729-737.
  • [28] Sharma, S.K., Sankar, B.V. (1997). Effect of Stitching on Impact and Interlaminar Properties of Graphite/Epoxy Laminates, Journal of Thermoplastic Composite Materials, 10(3), 241-253.
  • [29] Baucom, J.N., Zikry, M.A. (2005). Low-velocity impact damage progression in woven E-glass composite systems, Composites Part A: Applied Science and Manufacturing, 36(5), 658-664.
  • [30] Antonio, F.A, Marcelo, I.S., Neto, A.S. (2007). A study on nanostructured laminated plates behavior under lowvelocity impact loadings, International Journal of Impact Engineering, 34(1), 28-41.
  • [31] Bilisik, K., Yolacan, G. (2014). Experimental characterization of multistitched two dimensional (2D) woven E-glass/ polyester composites under low velocity impact load, Journal of Composite Materials, 48(17), 2145-2162.
  • [32] ASTM D792-13. (2013). Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, ASTM International, West Conshohocken, PA, USA.
  • [33] ASTM D3171-11. (2014). Standard Test Methods for Constituent Content of Composite Materials, ASTM International, West Conshohocken, PA, USA.
  • [34] ASTM D2734-09. (2014). Standard Test Methods for Void Content of Reinforced Plastics, ASTM International, West Conshohocken, PA, USA.
  • [35] ASTM D3039-76. (2000). Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, USA.
  • [36] ASTM D790-03. (2003). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, PA, USA.
  • [37] ASTM D2344-00. (2000). Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates, ASTM International, West Conshohocken, PA, USA.
  • [38] ASTM D7136/D7136M-15. (2007). Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event, ASTM International, West Conshohocken, PA, USA.
  • [39] Bilisik, K., Yolacan, G. (2015). Warp and Weft Directional Bending Properties of Multistitched Biaxial Woven E-Glass/ Polyester Nano Composites, Journal of Industrial Textiles, 45(1), 66-100.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc867378-b98f-4178-b5e1-7c52a10746ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.