PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Significant increase of aerosol number concentrations in air masses crossing a densely trafficked sea area

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, we evaluated 10 months data (September 2009 to June 2010) of atmospheric aerosol particle number size distribution at three atmospheric observation stations along the Baltic Sea coast: Vavihill (upwind, Sweden), Utö (upwind, Finland), and Preila (downwind, Lithuania). Differences in aerosol particle number size distributions between the upwind and downwind stations during situations of connected atmospheric flow, when the air passed each station, were used to assess the contribution of ship emissions to the aerosol number concentration (diameter interval 50–400 nm) in the Lithuanian background coastal environment. A clear increase in particle number concentration could be noticed, by a factor of 1.9 from Utö to Preila (the average total number concentration at Utö was 791 cm−3), and by a factor of 1.6 from Vavihill to Preila (the average total number concentration at Vavihill was 998 cm−3). The simultaneous measurements of absorption Ångström exponents close to unity at Preila supported our conclusion that ship emissions in the Baltic Sea contributed to the increase in particle number concentration at Preila.
Czasopismo
Rocznik
Strony
1--12
Opis fizyczny
Bibliogr. 38 poz., tab., wykr., mapy
Twórcy
autor
  • Center for Physical Sciences and Technology, Vilnius, Lithuania
  • Leibniz-Institute for Tropospheric Research, Leipzig, Germany
autor
  • Finnish Meteorological Institute, Helsinki, Finland
  • Division of Nuclear Physics, Lund University, Lund, Sweden
  • Division of Nuclear Physics, Lund University, Lund, Sweden
autor
  • Leibniz-Institute for Tropospheric Research, Leipzig, Germany
autor
  • Department of Atmospheric Sciences, University of Washington, Seattle, USA
autor
  • Leibniz-Institute for Tropospheric Research, Leipzig, Germany
  • Finnish Meteorological Institute, Helsinki, Finland
  • Finnish Meteorological Institute, Helsinki, Finland
  • Division of Nuclear Physics, Lund University, Lund, Sweden
autor
  • Division of Nuclear Physics, Lund University, Lund, Sweden
  • Division of Nuclear Physics, Lund University, Lund, Sweden
  • Leibniz-Institute for Tropospheric Research, Leipzig, Germany
autor
  • Center for Physical Sciences and Technology, Vilnius, Lithuania
Bibliografia
  • 1.Asmi, A., Wiedensohler, A., Laj, P., Fjaeraa, A.-M., Sellegri, K., Birmili, W., Weingartner, E., Baltensperger, U., Zdimal, V., Zikova, N., Putaud, J.-P., Marinoni, A., Tunved, P., Hansson, H.-C., Fiebig, M., Kivekäs, N., Lihavainen, H., Asmi, E., Ulevicius, V., Aalto, P.P., Swietlicki, E., Kristensson, A., Mihalopoulos, N., Kalivitis, N., Kalapov, I., Kiss, G., de Leeuw, G., Henzing, B., Harrison, R.M., Beddows, D., O'Dowd, C., Jennings, S.G., Flentje, H., Weinhold, K., Meinhardt, F., Ries, L., Kulmala, M., 2011. Number size distributions and seasonality of submicron particles in Europe 2008—2009. Atmos. Chem. Phys. 11, 5505—5538.
  • 2.Bieltvedt Skeie, R., Fuglestvedt, J., Berntsen, T., Tronstad Lund, M., Myhre, G., Rypdal, K., 2009. Global temperature change from the transport sectors: historical development and future scenarios. Atmos. Environ. 43, 6260—6270.
  • 3.Birmili, W., 2001. A moment-preserving parameterization of wide particle size distributions. J. Aerosol Sci. 32, S191—S192.
  • 4.Clarke, A.D., Varner, J.L., Eisele, F., Mauldin, R.L., Tanner, D., Litchy, M., 1998. Particle production in the remote marine atmosphere: cloud outflow and subsidence during ACE 1. J. Geophys. Res. 103 (D13), 16397—16409, http://dx.doi.org/10.1029/97JD02987.
  • 5.Corbett, J.J., Koehler, H.W., 2003. Updated emissions from ocean shipping. J. Geophys. Res. 108 (D20), 4650, http://dx.doi.org/ 10.1029/2003JD003751.
  • 6.Corbett, J.J., Winebrake, J.J., Green, E.H., Kasibhatla, P., Eyring, V., Lauer, A., 2007. Mortality from ship emissions: a global assessment. Environ. Sci. Technol. 41, 8512—8518.
  • 7.Diesch, J.M., Drewnick, F., Klimach, T., Borrmann, S., 2013. Investigation of gaseous and particulate emissions from various marine vessel types measured on the banks of the Elbe in Northern Germany. Atmos. Chem. Phys. 13, 3603—3618.
  • 8.Draxler, R.R., Rolph, G.D., 2003. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory). NOAA Air Resources Laboratory, Silver Spring, MD Model access via NOAA ARL READY Website, http://www.arl.noaa.gov/ready/hysplit4.html.
  • 9.Ehn, M., Vuollekoski, H., Petaja, T., Kerminen, V.M., Vana, M., Alto, P., de Leeuw, G., Ceburnis, D., Dupy, R., O'Dowd, C.D., Kulmala, M., 2010. Growth rates during coastal and marine new particle formation in western Ireland. J. Geophys. Res. 115, http://dx. doi.org/10.1029/2010JD014292.
  • 10.Engler, C., Lihavainen, H., Komppula, M., Kerminen, V.M., Kulmala, M., Viisanen, Y., 2007. Continuous measurements of aerosol properties at Baltic Sea. Tellus B 59, 728—741.
  • 11.González, Y., Rodríguez, S., García, J.C.G., Trujillo, J.L., García, R., 2011. Ultrafine particles pollution in urban coastal air due to ship emissions. Atmos. Environ. 45, 4907—4914.
  • 12.Gryning, S-E., Batchvarova, E., 2002. Marine boundary layer and turbulent fluxes over the Baltic Sea: measurements and modelling. Bound.-Lay. Meteorol. 103, 29—47.
  • 13.Hyvärinen, A.-P., Komppula, M., Engler, C., Kivekäs, N., Kerminen, V. M., Dal Maso, M., Viisanen, Y., Lihavainen, H., 2008. Atmospheric new particle formation at Utö, Baltic Sea 2003—2005. Tellus B 60, 345—352.
  • 14.IMO (International Maritime Organization), 2008. Amendments to the annex of the protocol of 1997 to amend the international convention for the prevention of pollution from ships, 1973, as modified by the protocol of 1978 relating thereto. Available at: http://www.imo.org/ (March 6th, 2014).
  • 15.Jalkanen, J.-P., Brink, A., Kalli, J., Pettersson, H., Kukkonen, J., Stipa, T., 2009. A modelling system for the exhaust emissions of marine traffic and its application to the Baltic Sea area. Atmos. Chem. Phys. 9, 9209—9223.
  • 16.Kasper, A., Aufdenblatten, S., Forss, A., Mohr, M., Burtscher, H., 2007. Particulate emissions from a low-speed marine diesel engine. Aerosol Sci. Technol. 41, 24—32.
  • 17.Kivekäs, N., Rusnak, V., Carreno Correa, S., Massling, A., Skov, H., Lange, R., Kristensson, A., 2014. Contribution of ship traffic to aerosol particle concentrations downwind of a major shipping route. Atmos. Chem. Phys. 14, 8419—8454.
  • 18.Kristensson, A., Dal Maso, M., Swietlicki, E., Hussein, T., Zhou, J., Kerminen, V.-M., Kulmala, M., 2008. Characterization of new particle formation events at a background site in Southern Sweden: relation to air mass history. Tellus B 60, 330—344.
  • 19.Kristensson, A., Johansson, M., Swietlicki, E., Kivekäs, N., Hussein, T., Nieminen, T., Kulmala, M., Dal Maso, M., 2014. NanoMap: Geographical mapping of atmospheric new particle formation through analysis of particle number size distribution data. Boreal Environ. Res. 19 (Suppl. B), 329—342.
  • 20.Kumar, P., Pirjola, L., Ketzel, M., Harrison, R.M., 2013. Nanoparticle emissions from 11 non-vehicle exhaust sources — a review. Atmos. Environ. 67, 252—277.
  • 21.Lewis, E.R., Schwartz, S.E., 2004. Sea salt Aerosol Production: Mechanisms, Methods, measurements, and models — A Critical review. Geophys. Monogr. Series, vol. 152. American Geophysical Union, Washington, DC, 413 pp.
  • 22.Ma, N., Zhao, C.S., Nowak, A., Müller, T., Pfeifer, S., Cheng, Y.F., Deng, Z.Z., Liu, P.F., Xu, W.Y., Ran, L., Yan, P., Göbel, T., Hallbauer, E., Mildenberger, K., Henning, S., Yu, J., Chen, L.L., Zhou, X.J., Stratmann, F., Wiedensohler, A., 2011. Aerosol optical properties in the North China Plain during HaChi campaign: an in-situ optical closure study. Atmos. Chem. Phys. 11, 5959—5973.
  • 23.Mordas, G., Kulmala, M., Petäjä, T., Aalto, P.P., Matulevicius, V., Grigoraitis, V., Ulevicius, V., Grauslys, V., Ukkonen, A., Hämeri, K., 2005. Design and performance characteristics of a condensation particle counter UF-02proto. Boreal Environ. Res. 10, 543—552.
  • 24.Müller, T., Henzing, J.S., de Leeuw, G., Wiedensohler, A., Alastuey, A., Angelov, H., Bizjak, M., Collaud Coen, M., Engström, J.E., Gruening, C., Hillamo, R., Hoffer, A., Imre, K., Ivanow, P., Jennings, G., Sun, J.Y., Kalivitis, N., Karlsson, H., Komppula, M., Laj, P., Li, S.-M., Lunder, C., Marinoni, A., Martins dos Santos, S., Moerman, M., Nowak, A., Ogren, J.A., Petzold, A., Pichon, J.M., Rodriquez, S., Sharma, S., Sheridan, P.J., Teinilä, K., Tuch, T., Viana, M., Virkkula, A., Weingartner, E., Wilhelm, R., Wang, Y.Q., 2011. Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops. Atmos. Meas. Tech. 4, 245—268, http://dx.doi.org/10.5194/amt-4-245-2011.
  • 25.Pettersson, H., Lindow, H., Brüning, T., 2012. Wave climate in the Baltic Sea in 2012. HELCOM Baltic Sea Environment Fact Sheets. Online. 2014. http://www.helcom.fi/baltic-sea-trends/ environment-fact-sheets/.
  • 26.Petzold, A., Hasselbach, J., Lauer, P., Baumann, R., Franke, K., Gurk, C., Schlager, H., Weingartner, E., 2008. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer. Atmos. Chem. Phys. 8, 2387—2403, http://dx. doi.org/10.5194/acp-8-2387-2008.
  • 27.Rissler, J., Nordin, E.Z., Eriksson, A.C., Nilsson, P.T., Frosch, M., Sporre, M.K., Wierzbicka, A., Svenningsson, B., Londahl, J., Messing, M.E., Sjogren, S., Hemmingsen, J.G., Loft, S., Pagels, J.H., Swietlicki, E., 2014. Effective density and mixing state of aerosol particles in a near-traffic urban environment. Environ. Sci. Technol. 48, 6300—6308, http://dx.doi.org/10.1021/es5000353.
  • 28.Rolph, G.D., 2003. Real-time Environmental Applications and Display sYstem (READY). NOAA Air Resources Laboratory, Silver Spring, MD Website (http://www.arl.noaa.gov/ready/hysplit4.html).
  • 29.Sandradewi, J., Prevot, A.S.H., Weingartner, E., Schmidhauser, R., Gysel, M., Baltensperger, U., 2008. A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer. Atmos. Environ. 42, 101—112.
  • 30.Sofiev, M., Soares, J., Prank, M., de Leeuw, G., Kukkonen, J., 2011. A regional-to-global model of emission and transport of sea salt particles in the atmosphere. J. Geophys. Res. 116 (D21), http:// dx.doi.org/10.1029/2010JD014713.
  • 31.Stipa, T., Jalkanen, J.-P., Hongisto, M., Kalli, J., Brink, A., 2007. Emissions of NOx from Baltic Shipping and First Estimates of their Effects on Air Quality and Eutrophication of the Baltic Sea. Univ. Turku, ISBN: 978-951-53-3028-4, 33 pp.
  • 32.Stohl, A., 1998. Computation, accuracy and applications of trajectories — a review and bibliography. Atmos. Environ. 32, 947—966.
  • 33.Stokes, M.D., Deane, G.B., Prather, K., Bertram, T.H., Ruppel, M.J., Ryder, O.S., Brady, J.M., Zhao, D., 2013. A Marine Aerosol Reference Tank system as a breaking wave analogue for the production of foam and sea-spray aerosols. Atmos. Meas. Tech. 6, 1085—1094.
  • 34.Ulevicius, V., Bycenkiene, S., Remeikis, V., Garbaras, A., Kecorius, S., Andriejauskiene, J., Jasineviciene, D., Mocnik, G., 2010. Characterization of pollution events in the East Baltic region affected by regional biomass fire emissions. Atmos. Res. 2, 190—200.
  • 35.Virkkula, A., Makela, T., Hillamo, R., Yli-Tuomi, T., Hirsikko, A., Hameri, K., Koponen, I.K., 2007. A simple procedure for correcting loading effects of Aethalometer data. J. Air Waste Manage. 57, 1214—1222.
  • 36.Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., Baltensperger, U., 2003. Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci. 34, 1445—1463.
  • 37.Wiedensohler, A., 1988. An approximation of the bipolar charge distribution for particles in the submicron size range. J. Aerosol Sci. 19, 387—389.
  • 38.Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac, H., Villani, P., Laj, P., Aalto, P., Ogren, J.A., Swietlicki, E., Williams, P., Roldin, P., Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S.G., O'Dowd, C.D., Marinoni, A., Horn, H.-G., Keck, L., Jiang, J., Scheckman, J., McMurry, P.H., Deng, Z., Zhao, C.S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., Bastian, S., 2012. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos. Meas. Tech. 5, 657—685.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc81c36f-1a78-4278-9de1-cb83ecb3521c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.