Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Power-to-liquid (PtL) fuels are a promising technology and alternative to biofuels and conventional fuels. In this work, the environmental impact of PtL was investigated using life cycle assessment (LCA) in order to see how the energy source used in producing the PtL affects the environmental impacts of the fuel. The electrolysis cell used was solid oxide electrolysis cell, and the pathway of CO2 provision was biomass power plant. Four scenarios of energy sources were compared; the first scenario involved the electricity from German grid and heat from chemical industry, the second one was the electricity from Saudi Arabia grid and heat from chemical industry, the third one concerned the electricity from wind turbine and heat from evacuated tube collector, and the fourth scenario was the electricity from photovoltaic and heat from evacuated tube collector. The result of the life cycle assessment showed that the PtL fuels have environmental benefits over the fossil reference only in the third and fourth scenarios where renewable electricity was used.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
239--244
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
autor
- Mechanical Engineering Department, The University of Jordan, Amman 11942, Jordan
autor
- Mechanical Engineering Department, The University of Jordan, Amman 11942, Jordan
autor
- Mechanical Engineering Department, The University of Jordan, Amman 11942, Jordan
autor
- Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Hamburg 21073, Germany
autor
- Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Hamburg 21073, Germany
Bibliografia
- 1. Schmidt, P. Weindorf, W. Roth, A. Batteiger, V. and Riegel, F. 2016. Power-to-Liquids Potentials and Perspectives for the Future Supply of Renewable Aviation Fuel. German Environment Agency.
- 2. Mignard, D. and Pritchard, C. (2006), “Processes for the Synthesis of Liquid Fuels from CO2 and Marine Energy”, Chemical Engineering Research and Design, 84, 828-836.
- 3. Parra, D. Zhang, X. Bauer, C. and Patel, M. 2017. An integrated techno-economic and life cycle environmental assessment of power-to-gas systems. Applied Energy, 193, 440-454.
- 4. Zhang, X. Bauer, C. Mutel, C. and Volkart, K. 2017. Life Cycle Assessment of Power-to-Gas: Approaches, system variations, and their environmental implications. Applied Energy, 190, 326-338.
- 5. Varone, A. and Ferrari, M. 2015. Power to liquid and power to gas: An option for the German Energiewende. Renewable and Sustainable Energy Reviews, 45, 207-218.
- 6. Eric D. Larson 2006. A review of life-cycle analysis studies on liquid biofuel systems for the transport sector”, Energy for Sustainable Development, 10, 109-126.
- 7. Sternberg, A. and Bardow, A. 2016. Life Cycle Assessment of Power-to-Gas: Syngas vs Methane. American Chemical Society, 4, 4156-4165.
- 8. Iribarren, D. Susmozas, A. and Dufour, J. 2013. Life-cycle assessment of Fischer–Tropsch products from biosyngas. Renewable Energy, 59, 229236.
- 9. Jungbluth, N. Büsser, S. Frischknecht, R. and Tuchschmid, M. 2008. Life Cycle Assessment of Biomass-to-Liquid Fuels. ESU-services GmbH, Uster.
- 10. www.netl.doe.gov (National Energy Technology Laboratory).
- 11. Odenwald, P. 2017. Power-to-Liquid-Prozesse auf Basis der Fischer-Tropsch-Synthese – Simulation und Bewertung. Personal communication.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc819636-2834-4e2b-92b8-1098b2be580a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.