PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regions of Uniqueness Quickly Reconstructed by Three Directions in Discrete Tomography

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In discrete tomographic image reconstruction, projections are taken along a finite set S of valid directions for a working grid A. In general, uniqueness cannot be achieved in the whole grid A. Usually, some information on the object to be reconstructed is introduced, that, sometimes, allows possible ambiguities to be removed. From a different perspective, one aims in finding subregions of A where uniqueness can be guaranteed, and obtained in linear time, only from the knowledge of S. When S consists of two lattice directions, the shape of any such region of uniqueness, say ROU, have been completely characterized in previous works by means of a double Euclidean division algorithm called DEDA. Results have been later extended to special triples of directions, under a suitable assumption on their entries. In this paper we remove the previous assumption, so providing a complete characterization of the shape of the ROU for such kind of triples. We also show that the employed strategy can be even applied to more general sets of three directions, where the corresponding ROU can be characterized as well. Independently of the combinatorial interest of the problem, the result can be exploited to define in advance, namely before using any kind of radiation, suitable sets of directions that allow regions of interest to be included in the corresponding ROU. Results have been proved in all details, and several experiments are considered, in order to support the theoretical steps and to clarify possible applications.
Wydawca
Rocznik
Strony
407--423
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
  • Dipartimento di Matematica “F. Brioschi”, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
  • Dipartimento di Matematica “F. Brioschi”, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
autor
  • Dipartimento di Matematica e Informatica “U. Dini”, Università di Firenze, viale Morgagni 65, 50134 Firenze, Italy
Bibliografia
  • [1] Radon J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Phys. Kl., 1917;(69):262–277.
  • [2] Dulio P, Frosini A, Pagani SMC. Uniqueness regions under sets of generic projections in discrete tomography. In: Discrete geometry for computer imagery, volume 8668 of Lecture Notes in Comput. Sci., pp. 285–296. Springer, 2014. doi:10.1007/978-3-319-09955-2_24. URL http://dx.doi.org/10.1007/978-3-319-09955-224.
  • [3] Dulio P, Frosini A, Pagani SMC. A Geometrical Characterization of Regions of Uniqueness and Applications to Discrete Tomography. Inverse Problems, 2015;31(12):125011. URL http://stacks.iop.org/0266-5611/31/i=12/a=125011.
  • [4] Dulio P, Frosini A, Pagani SMC. Geometrical Characterization of the Uniqueness Regions Under Special Sets of Three Directions in Discrete Tomography, pp. 105–116. Springer International Publishing, Cham. ISBN 978-3-319-32360-2, 2016. doi:10.1007/978-3-319-32360-2_8. URL http://dx.doi.org/10.1007/978-3-319-32360-28.
  • [5] Hajdu L, Tijdeman R. Algebraic aspects of discrete tomography. Journal fur die Reine und Angewandte Mathematik, 2001;534:119–128. doi:10.1515/crll.2001.037.
  • [6] Guédon JP, Normand N. The Mojette Transform: The First Ten Years. In: Andres E, Damiand G, Lienhardt P (eds.), Discrete Geometry for Computer Imagery, volume 3429 of Lecture Notes in Computer Science, pp. 79–91. Springer Berlin Heidelberg. ISBN 978-3-540-25513-0, 2005. doi:10.1007/978-3-540-31965-8_8. URL http://dx.doi.org/10.1007/978-3-540-31965-88.
  • [7] Normand N, Guédon JP. La transformée Mojette: une représentation redondante pour l’image. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, 1998;326(1):123–126. doi: http://dx.doi.org/10.1016/S0764-4442(97)82724-3.
  • [8] Katz M. Questions of uniqueness and resolution in reconstruction from projections / Myron Bernard Katz. Springer-Verlag Berlin ; New York, 1978. ISBN-0387090878. doi:10.1007/978-3-642-45507-0.
  • [9] Normand N, Kingston A, Évenou P. A Geometry Driven Reconstruction Algorithm for the Mojette Transform. In: Kuba A, Nyúl LG, Palágyi K (eds.), DGCI, volume 4245 of Lecture Notes in Computer Science. Springer 2006 pp. 122–133. ISBN-3-540-47651-2.
  • [10] Brunetti S, Dulio P, Peri C. Discrete tomography determination of bounded lattice sets from four X-rays. Discrete Appl. Math., 2013;161(15):2281–2292. doi:10.1016/j.dam.2012.09.010. URL http://dx.doi.org/10.1016/j.dam.2012.09.010.
  • [11] Brunetti S, Dulio P, Peri C. Discrete tomography determination of bounded sets in Zn. Discrete Appl. Math., 2015;183:20–30. doi:10.1016/j.dam.2014.01.016. URL http://dx.doi.org/10.1016/j.dam.2014.01.016.
  • [12] Fishburn PC, Shepp LA. Sets of uniqueness and additivity in integer lattices. In: Discrete tomography, Appl. Numer. Harmon. Anal., pp. 35–58. Birkhäuser Boston, Boston, MA, 1999. doi:10.1007/978-1-4612-1568-4_2.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc7fd505-ed7e-4a56-8f68-732b47447fc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.