PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A fault location strategy based on information fusion and CODAS algorithm under epistemic uncertainty

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Application of new technology in modern systems not only substantially improves the performance, but also presents a severe challenge to fault location of these systems. This paper presents a new fault location strategy for maintenance personnel to recover them based on information fusion and improved CODAS algorithm. Firstly, a fault tree is adopted to develop the failure model of a complex system, and failure probability of components is determined by expert evaluations to handle the uncertainty problem. Moreover, a fault tree is converted into an evidence network to obtain importance degrees, which are used to construct a diagnostic decision table together with the risk priority number. Additionally, these results are updated to optimize the maintenance process using sensor information. A novel dynamic location strategy is designed based on interval CODAS algorithm and optimal fault location strategy can be obtained. Finally, a real system is analyzed to demonstrate the feasibility of the proposed maintenance strategy.
Rocznik
Strony
478--488
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Nanchang University, School of Information Engineering, Nanchang 330031, China
autor
  • Nanchang University, School of Information Engineering, Nanchang 330031, China
autor
  • Nanchang University, School of Information Engineering, Nanchang 330031, China
  • Nanchang University, School of Information Engineering, Nanchang 330031, China
Bibliografia
  • 1. Ahmed S, et al. A data-driven Bayesian network learning method for process fault diagnosis. Process Safety and Environmental Protection, 2021, 150: 110-122, https://doi.org/10.1016/j.psep.2021.04.004.
  • 2. Assaf T, Dugan J B. Design for diagnosis using a diagnostic evaluation measure. IEEE instrumentation & measurement magazine, 2006, 9(4): 37-43, http://doi.org/ 10.1109/MIM.2006.1664040.
  • 3. Assaf T, Dugan J B. Diagnosis based on reliability analysis using monitors and sensors. Reliability Engineering & System Safety, 2008, 93(4): 509-521, https://doi.org/10.1016/j.ress.2006.10.024.
  • 4. Chen Z S, Chin K S, Li Y L, et al. Proportional hesitant fuzzy linguistic term set for multiple criteria group decision making. Information Sciences, 2016, 357: 61-87, https://doi.org/10.1016/j.ins.2016.04.006.
  • 5. Chen L, Gou X. The application of probabilistic linguistic CODAS method based on new score function in multi-criteria decision-making. Computational and Applied Mathematics, 2022, 41(1): 1-25, https://doi.org/10.1007/s40314-021-01568-6.
  • 6. Chen L, Gao Y, Dui H, et al. Importance measure-based maintenance optimization strategy for pod slewing system. Reliability Engineering & System Safety, 2021, 216: 1-8, https://doi.org/10.1016/j.ress.2021.108001.
  • 7. Deng X, Jiang W. Fuzzy risk evaluation in failure mode and effects analysis using a D numbers based multi-sensor information fusion method. Sensors, 2017, 17(9): 2086, https://doi.org/10.3390/s17092086.
  • 8. Duan R, Lin Y, Zeng Y. Fault diagnosis for complex systems based on reliability analysis and sensors data considering epistemic uncertainty. Eksploatacja i Niezawodność-Maintenance and Reliability, 2018, 20(4): 558-566, http://dx.doi.org/10.17531/ein.2018.4.7.
  • 9. Duan R, Huang S, He J. Optimal fault diagnosis strategy for complex systems considering common cause failure under epistemic uncertainty. Engineering Computations, 2021, 38(9):3417-3437, https://doi.org/10.1108/EC-09-2020-0515.
  • 10. Garshasbi M S. Fault localization based on combines active and passive measurements in computer networks by ant colony optimization. Reliability Engineering & System Safety, 2016, 152: 205-212, https://doi.org/10.1016/j.ress.2016.03.017.
  • 11. Garshasbi M S, Jamali S. A new fault detection method using end-to-end data and sequential testing for computer networks, International Journal Information Technology and Computer Science, 2014, 1: 93-100, http://doi.org/10.5815/ijitcs.2014.01.11.
  • 12. Gao X, Su X, Qian H, et al. Dependence assessment in human reliability analysis under uncertain and dynamic situations. Nuclear Engineering and Technology, 2022, 54(3): 948-958, https://doi.org/10.1016/j.net.2021.09.045.
  • 13. Gao X M, Zhang M, Gao X. Safety Assessment and Optimization of Power-Battery-Equipped Traction System for Urban Rail Transit. Railway Locomotive & CAR, 2019, 39(04): 101-105.
  • 14. Huang S, Duan R, He J, et al. Fault Diagnosis Strategy for Complex Systems Based on Multi-Source Heterogeneous Information Under Epistemic Uncertainty. IEEE Access, 2020, 8: 50921-50933, http://doi.org/10.1109/ACCESS.2020.2980397.
  • 15. Huang Y F, Jing B. Diagnosis strategy for multi-value attribute system based on Rollout algorithm. Control and decision, 2011, 26(8): 1269-1272.
  • 16. Kumar K, Chen S M. Multiple attribute group decision making based on advanced linguistic intuitionistic fuzzy weighted averaging aggregation operator of linguistic intuitionistic fuzzy numbers. Information Sciences, 2022, 587: 813-824, https://doi.org/10.1016/j.ins.2021.11.014.
  • 17. Kabir S, Geok T K, Kumar M, et al. A method for temporal fault tree analysis using intuitionistic fuzzy set and expert elicitation. IEEE Access, 2020, 8: 980-996, https://doi.org/10.1109/ACCESS.2019.2961953.
  • 18. Kamble S N, Rajiv B. Critical Analysis of Machine Condition Monitoring by Using Risk Priority Number and Analytical Hierarchy Process. Journal of Failure Analysis and Prevention, 2022, 22:623–632, https://doi.org/10.1007/s11668-022-01350-8.
  • 19. Khakzad N. System safety assessment under epistemic uncertainty: using imprecise probabilities in Bayesian network. Safety science, 2019, 116: 149-160, https://doi.org/10.1016/j.ssci.2019.03.008.
  • 20. Li R, Chen Z, Li H, et al. A new distance-based total uncertainty measure in Dempster-Shafer evidence theory. Applied Intelligence, 2022, 52(2): 1209-1237, https://doi.org/10.1007/s10489-021-02378-3.
  • 21. Li J, Duan R. Dynamic diagnostic strategy based on reliability analysis and distance-based VIKOR with heterogeneous information. Eksploatacja i Niezawodność-Maintenance and Reliability, 2018, 20(4), http://dx.doi.org/10.17531/ein.2018.4.12.
  • 22. Liu Y, Jin S, Lin Z, et al. Optimal sensor placement for fixture fault diagnosis using Bayesian network. Assembly Automation, 2011, 31(2): 176-181, https://doi.org/10.1108/01445151111117764.
  • 23. Lu C, Wang S, Wang X. A multi-source information fusion fault diagnosis for aviation hydraulic pump based on the new evidence similarity distance. Aerospace Science and Technology, 2017, 71: 392-401, https://doi.org/10.1016/j.ast.2017.09.040.
  • 24. Mi J, Cheng Y, Song Y, et al. Application of dynamic evidential networks in reliability analysis of complex systems with epistemic uncertainty and multiple life distributions. Annals of Operations Research, 2022,311:311–333, https://doi.org/10.1007/s10479-019-03211-4.
  • 25. Mahanta J, Panda S. A novel distance measure for intuitionistic fuzzy sets with diverse applications. International Journal of Intelligent Systems, 2021, 36(2): 615-627, https://doi.org/10.1002/int.22312.
  • 26. Mathew M, Thomas J. Interval valued multi criteria decision making methods for the selection of flexible manufacturing system. International Journal of Data and Network Science, 2019, 3(4): 349-358. https://doi.org/10.5267/j.ijdns.2019.4.001.
  • 27. Zhang Z, Chen Z, Jiang C. Enhanced reliability analysis method for multistate systems with epistemic uncertainty based on evidential network. Quality and Reliability Engineering International, 2021, 37(1): 262-283, https://doi.org/10.1002/qre.2735.
  • 28. Sehgal R, Gandhi O P, Angra S. Fault location of tribo-mechanical systems—a graph theory and matrix approach. Reliability Engineering & System Safety, 2000, 70(1): 1-14, https://doi.org/10.1016/S0951-8320(00)00021-1.
  • 29. Salehpour‐Oskouei F, Pourgol‐Mohammad M. Fault diagnosis improvement using dynamic fault model in optimal sensor placement: A case study of steam turbine. Quality and Reliability Engineering International, 2017, 33(3): 531-541, https://doi.org/10.1002/qre.2031.
  • 30. Tian H, Duan F, Fan L, et al. Fault diagnostic strategy of multivalued attribute system based on growing algorithm. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2019, 233(2): 235-245, https://doi.org/10.1177/1748006X18770356.
  • 31. Wang Q, Sun H, Zhou L. An intuitionistic fuzzy multi-attribute group decision making method with incomplete weight information based on improved VIKOR. Journal of Intelligent & Fuzzy Systems, 2019, 37(2): 1639-1647, http://doi.org/10.3233/JIFS-179228.
  • 32. Xu X, Cao D, Zhou Y, et al. Application of neural network algorithm in fault diagnosis of mechanical intelligence. Mechanical Systems and Signal Processing, 2020, 141: 106625, https://doi.org/10.1016/j.ymssp.2020.106625.
  • 33. Xiao Y, Xue J, Zhang L, et al. Misalignment Fault Diagnosis for Wind Turbines Based on Information Fusion. Entropy, 2021, 23(2): 243, https://doi.org/10.3390/e23020243.
  • 34. Yazdi M, Soltanali H. Knowledge acquisition development in failure diagnosis analysis as an interactive approach. International Journal on Interactive Design and Manufacturing, 2019, 13(1): 193-210, https://doi.org/10.1007/s12008-018-0504-6.
  • 35. Zhang J, Kang J, Sun L, et al. Risk assessment of floating offshore wind turbines based on fuzzy fault tree analysis. Ocean Engineering, 2021, 239: 109859., https://doi.org/10.1016/j.oceaneng.2021.109859.
  • 36. Zhang C, Zhang Y, Dui H, Wang S, Tomovic MM. Importance measure-based maintenance strategy considering maintenance costs. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2022; 24 (1): 15–24, http://doi.org/10.17531/ein.2022.1.3.
  • 37. Zeng X, Xiong X, Luo Z. Grid Fault Diagnosis Based on Information Entropy and Multi-source Information Fusion. International Journal of Electronics and Telecommunications, 2021, 67(2): 143-148, http://doi.org/10.24425/ijet.2021.135956.
  • 38. Zhang L, Zhang J, You L, et al. Reliability analysis of structures based on a probability‐uncertainty hybrid model. Quality and Reliability Engineering International, 2019, 35(1): 263-279, https://doi.org/10.1002/qre.2396.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc7e42e5-9ffe-449c-a22c-0d5db060147b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.