PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nowa technologia otrzymywania alternatywnych dodatków pucolanowych do produkcji cementu portlandzkiego z materiałów odzyskiwanych ze składowisk odpadów

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
New technology for alternative pozzolanic additions for Portland cement from abandoned landfills
Języki publikacji
PL EN
Abstrakty
PL
Praca omawia metody separacji i technologii wykorzystania odpadów, odzyskiwanych ze starych składowisk, jako aktywnych dodatków mineralnych do produkcji cementu. Przedmiotem badań był popiół lotny pobierany ze składowiska położonego w pobliżu nieczynnej już elektrowni opalanej węglem, w Hiszpanii, a materiał badano po kątem właściwości pucolanowych. W tym celu zbudowano małą instalację doświadczalną, umożliwiającą rozdrobnienie i rozdzielenie popiołu z hałdy na kilka frakcji ziarnowych. Zbadano skład chemiczny i fazowy oraz właściwości pucolanowe tych frakcji. Sporządzono portlandzkie cementy popiołowe, do których dodano 25% najdrobniejszej frakcji popiołu oraz tej samej frakcji, z której usunięto niespalony węgiel.
EN
In this study the technology of fly ash and slag from the old landfill reusing as active mineral addition for cement manufacture is presented. The material of this landfill located in Spain, nearby the abandoned coal-fired power plant, was ground and separated in some tractions to study the possibility of use this waste as pozzolanic addition for Portland fly ash cement production. A laboratory-scale plant waIn this study the technology of fly ash and slag from the old landfill reusing as active mineral addition for cement manufacture is presented. The material of this landfill located in Spain, nearby the abandoned coal-fired power plant, was ground and separated in some tractions to study the possibility of use this waste as pozzolanic addition for Portland fly ash cement production. A laboratory-scale plant was designed for grinding and separation of this waste in tour tractions with particle sizes ranging up 10 mm - 0.032 micron. The properties, chiefly pozzolanic behaviour, of these tractions were examined. 25% of the finest fraction with unburnt carbon and after its separation, was added to Portland cement and compared with industrial Portland fly ash cement.s designed for grinding and separation of this waste in tour tractions with particle sizes ranging up 10 mm - 0.032 micron. The properties, chiefly pozzolanic behaviour, of these tractions were examined. 25% of the finest fraction with unburnt carbon and after its separation, was added to Portland cement and compared with industrial Portland fly ash cement.
Czasopismo
Rocznik
Strony
88--105
Opis fizyczny
Bibliogr. 27 poz., il., tab.
Twórcy
autor
  • Cements and Recycling Materials Department, Eduardo Torroja Institute for Construction Science (IETcc-CSIC), Madrid, Spain
autor
  • Cements and Recycling Materials Department, Eduardo Torroja Institute for Construction Science (IETcc-CSIC), Madrid, Spain
  • Cements and Recycling Materials Department, Eduardo Torroja Institute for Construction Science (IETcc-CSIC), Madrid, Spain
  • Grupo Cementos Portland Valderrivas (GPCV), Spain
autor
  • Cement International Technologies (CIT), Spain
Bibliografia
  • 1. L. Bernstein, J. Roy, K. C. Delhotal, J. Harnisch, R. Matsuhashi, L. Price, Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge (United Kingdom and New York): Cambridge University Press 2007.
  • 2. IEA Greenhouse Gas R&D Programme (IEA GHG), CO2 Capture in the Cement Industry, 2008/3, July 2008.
  • 3. Cement Technology Roadmap 2009 Carbon emissions reductions up to 2050. (2009),IEA. http://www.iea.org/publications/freepublications/publication/Cement.pdf
  • 4. WBCSD Cement Sustainability Initiative (CSI), 10 years of progress and moving on into the next decade (2012). World Business Council for Sustainable Development (WBCSD), Geneva, Switzerland. http://csiprogress2012.org/templates/rt_voxel/CSI%20Progress%20Report_20120530.pdf
  • 5. European Cement Research Academy (ECRA) (2009), Development of State of the Art-Techniques in Cement Manufacturing: Trying to Look Ahead. ECRA-CSI, Düsseldorf, Germany and Geneva, Switzerland. http://www.wbcsdcement.org/pdf/technology/Technology%20papers.pdf
  • 6. Pathways to a lowcarbon Economy, version 2 of the Global Greenhouse Gas Abatement Cost Curve, McKinsey & Company, January 2009. www.mckinsey.com/globalGHGcostcurve
  • 7. J. E. Halliday, T. D. Dyer, R. K. Dhir, Use of Incinerator Fly Ash as a Pozzolanic Activator, Sustainable construction: Use of Incinerator Ash, 447, Proceedings of the International Symposium Organised by de Concrete Technology Unit. University of Dundee and Held at the University of Dundee, Thomas Telford Publishing, London 2000.
  • 8. C. Argiz, E. Menéndez, M. A. Sanjuán, Effect of mixes made of coal bottom ash and fly ash on the mechanical strength and porosity of Portland cement. Mater. Construcc., 63, 49 (2013).
  • 9. UNE-EN 197-1:2011 Cement - Part 1: Composition, specifications and conformity criteria for common cements, 2011.
  • 10. M. D. A. Thomas, P. B. Bamforth, Modelling chloride diffusion in concrete: Effect of fly ash and slag. Cem Concr Res., 29, 487 (1999).
  • 11. V. G. Papadakis, Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cem Concr Res., 30, 291 (2000).
  • 12. A. Elahi, P. A. M. Basheer, S. V. Nanukuttan, Q. U. Z. Khan, Mechanical and durability properties of high performance concretes containing supplementary cementitious materials. Constr Build Mater., 24, 292 (2010).
  • 13. TIRME, Departamento de Medio Ambiente y Calidad. “Reutilización de subproductos de la incineración de residuos urbanos en la construcción: escorias y cenizas”. Octubre 2000. MINISTERIO DE MEDIO AMBIENTE, MEDIO RURAL Y MARINO. http://www.cedex.es/CEDEX/LANG_CASTELLANO/
  • 14. UNESA (Asociación Española de la Industria Eléctrica). http://www.unesa.es/
  • 15. Production and Utilisation of CCPs in 2010 in Europe (EU 15) (2010) ECOBA. European Coal Combustion Products Association e.V. http://www.ecoba.com/ecobaccpprod.html.
  • 16. ANÁLISIS INVENTARIADO ESCOMBRERAS EN ESPAÑA por CCAA 1983-89. Instituto Geológico y Minero de España, 1989.
  • 17. S. Van Passe, M. Dubois, J. Eyckmans, S. De Gheldere, F. Ang, P. T. Jones, K. Van Acker, The economics of enhanced landfill mining: private and societal performance drivers. J of Clean Prod., 55, 92 (2013).
  • 18. A. Bosmans, I. Vanderreydt, D. Geysen, L. Helsen, The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review. J. of Clean Prod., 55, 10 (2013).
  • 19. P. T. Jones, D. Geysen, Y. Tielimans, S. Van Passel, Y. Pontikes, B. Blanpain, Quaghebeur, M.; Hoekstra, N. Enhanced Landfill Mining in view of multiple resource recovery: a critical review. J. of Clean Prod., 55, 45 (2013).
  • 20. P. Frändegård, J. Krook, N. Svensson, M. Eklund, A novel approach for environmental evaluation of landfill mining. J. of Clean Prod., 55, 24 (2013).
  • 21. UNE-EN 196-2:2014, Methods of testing cement-Part 2:Chemical analysis of cement. 2014
  • 22. UNE-32-004-84, Solid mineral fuels: Determination of ashes, 1984.
  • 23. UNE-EN 196-5:2011, Methods of testing cement- Part 5: Pozzolanicity test for pozzolanic cement, 2011.
  • 24. J. A. Gadsden, Infrared spectra of minerals and related inorganic compounds, London, Butterworths 1975.
  • 25. K. Nakamoto, Infrared spectra of Inorganic and Coordination Compounds, New York-London, John Wiley & Sons, 1963.
  • 26. S. Donatello, M. Tyrer, C. R. Cheeseman, Comparison of test methods to assess pozzolanic activity. Cem Concr Comp., 32, 121 (2010).
  • 27. M. J. Gibbs, P. Soyka, D. Conneely, CO2 emissions from cement production. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. The Intergovernmental Panel on Climate Change (IPCC). (2003)http://www.ipcc-nggip.iges.or.jp/public/gp/bgp/3_1_Cement_Production.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc73597a-f80c-4c59-a3db-d8f3df934a0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.