Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Porównanie filtrów cząsteczkowych, pomocniczego i wiarygodnego, do estymacji stanu systemów dynamicznych
Języki publikacji
Abstrakty
In this paper, algorithms of the state estimation of dynamical systems, using different types of particle filters, have been presented. Three Particle Filter methods have been used: Bootstrap Filter, Auxiliary Particle Filter and Likelihood Particle Filter. These methods have been applied to two nonlinear objects, with quadratic measurement functions. The results have been additionally compared with the outcome from Kalman filters. Based on the obtained results (5 different quality indices) the estimation methods have been evaluated.
W niniejszej pracy zostały przedstawione algorytmy estymacji stanu układów dynamicznych za pomocą różnych rodzajów filtrów cząsteczkowych. Zaprezentowano trzy metody filtrów cząsteczkowych: algorytm Bootstrap, pomocniczy filtr cząsteczkowy i wiarygodny filtr cząsteczkowy. Metody te zastosowano dla dwóch obiektów nieliniowych o kwadratowych funkcjach pomiarowych. Z filtrami cząsteczkowymi zostały dodatkowo zestawione metody filtru Kalmana. Na podstawie uzyskanych wyników (5 różnych wskaźników jakości) metody estymacji zostały ocenione.
Wydawca
Czasopismo
Rocznik
Tom
Strony
86--90
Opis fizyczny
Bibliogr. 24 poz., tab., wykr.
Twórcy
autor
- Poznan University of Technology, Faculty of Electrical Engineering, Institute of Control, Robotics and Information Engineering, Division of Control and Robotics, Piotrowo 3a Street, 60-965 Poznań
autor
- Poznan University of Technology, Faculty of Computing, Institute of Automation and Robotics, Division of Electronics Systems and Signal Processing and also Faculty of Electrical Engineering, Institute of Control, Robotics and Information Engineering, Division of Control and Robotics, Piotrowo 3a Street, 60-965 Poznań
autor
- Poznan University of Technology, Faculty of Electrical Engineering, Institute of Control, Robotics and Information Engineering, Division of Control and Robotics, Piotrowo 3a Street, 60-965 Poznań
Bibliografia
- [1] Abur A., Exposito A. G., Power System State Estimation: Theory and Implementation, Marcel Dekker, Inc., (2004), 17-49. DOI: 10.1201/9780203913673.ch2
- [2] Okon T. Weighted-least-squares Power System State Estimation in Different Coordinate Systems, Przegląd Elektrotechniczny 86 (2010), No. 11, 54-58.
- [3] Udupa H. N., Minal M., Mishra M. T., Node Level ANN Technique for Real Time Power System State Estimation, International Journal of Scientific & Engineering Research, 5 (2004), No. 1, 1500-1505.
- [4] Zawirski K., Deskur J., Kaczmarek T., Automation of Electric Drive (in Polish), Publishing House of Poznań University of Technology, Poznań 2012.
- [5] Hajiyev C., Soken H. E., Robust adaptive Kalman filter for estimation of UAV dynamics in the presence of sensor/actuator faults, Aerospace Science and Technology, 28 (2013), No. 1, 376-383.
- [6] Marantos P., Koveos Y., Kyriakopoulos K. J., UAV State Estimation using Adaptive Complementary Filters, IEEE Transactions on Control Systems Technology, 24 (2016), No. 4, 1214-1226.
- [7] Schulz D., Burgard W., Fox D., Cremers A. B., Tracking multiple moving targets with a mobile robot using particle filters and statistical data association, Robotics and Automation, (2001). Proceedings 2001 ICRA. IEEE International Conference on. Vol. 2. IEEE, 2001., 1665-1670.
- [8] Gordon N. J., Salmond D. J., Smith A. F. M., Novel Approach to Nonlinear/non-Gaussian Bayesian State Estimation, IEE Proceedings-F, 140 (1993), No. 2, 107-113. DOI: 10.1049/ip-f-2.1993.0015
- [9] Ke L., Jingjing W., Lei S., Peng Ch., New Particle Filter Based on GA for Equipment Remaining Useful Life Prediction. Sensors 17 (2017), No. 4, 696.
- [10] Ribeiro M., Riberio I., Kalman and Extended Kalman Filters: Concept, Derivation and Properties, Institute for Systems and Robotics, 43 (2004)
- [11] Wan, Eric A., and Rudolph Van Der Merwe, The unscented Kalman filter for nonlinear estimation, Adaptive Systems for Signal Processing, Communications, and Control Symposium, (2000), AS-SPCC, The IEEE 2000. Ieee, 2000.
- [12] Kalman R E., A New Approach to Linear Filtering and Prediction Problems, Journal of basic Engineering, 82 (1960), No. 1, 35-45
- [13] Candy J. V., Bayesian Signal Processing, WILEY, New Jersey 2009, 36-44, 237-298. DOI: 10.1002/9780470430583
- [14] Arulampalam S., Maskell S., Gordon N., Clapp T., A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking, IEEE Transactions on Signal Processing, 50 (2002), No. 2, 174-188. DOI: 10.1109/78.978374
- [15] Doucet A., Johansen A. M., A Tutorial on Particle Filtering and Smoothing: Fifteen years later, handbook of Nonlinear Filtering 2009/12, 656-704.
- [16] Pitt, Michael K., Shephard N., Filtering via simulation: Auxiliary particle filters, Journal of the American statistical association, 94 (1999), No. 446, 590-599.
- [17] Kozierski P., Lis M., Ziętkiewicz J., Resampling in Particle Filtering – Comparison, Studia z Automatyki i Informatyki, 38 (2013), 35-64.
- [18] Kitagawa G., Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models, Journal of computational and graphical statistics, 5 (1996), No. 1, 1-25.
- [19] Chen H., Liu X., She C., Yao C., Power System Dynamic State Estimation Based on a New Particle Filter, Procedia Environmental Sciences, 11 (2011), Part B, 655-661. DOI: 10.1016/j.proenv.2011.12.102
- [20] Michalski J., Kozierski P., Ziętkiewicz J., Comparison of State Estimation Methods for Dynamical Systems (in Polish), Pomiary Automatyka Robotyka, 21 (2017), No. 4, 41-47.
- [21] Valverde G., Terzija V., Unscented Kalman Filter for Power System Dynamic State Estimation, IET Generation, Transmission & Distribution, 5 (2011), Iss. 1, 29-37.
- [22] Singh R., Pal B. C., Jabr R. A., Choice of estimator for distribution system state estimation, IET Generation, Transmission & Distribution, 3 (2009), Iss. 7, 666-678.
- [23] Kozierski P., Lis M., Horla D., Wrong Transition and Measurement Models in Power System State Estimation, Archives of Electrical Engineering, 65 (2016), No. 3, 559-574. DOI: 10.1515/aee-2016-0040
- [24] Florek A., Mazurkiewicz P., Dynamic Signals and Systems (in Polish), 2nd ED., Poznań 2015. ISBN: 978-83-7775360-6
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc721cdf-b272-4330-a112-b5fd2ed1ae7e