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Background: Detecting the plants as objects of interest in any vision-based input se-
quence is highly complex due to nonlinear background objects such as rocks, shadows,
etc. Therefore, it is a difficult task and an emerging one with the development of pre-
cision agriculture systems. The nonlinear variations of pixel intensity with illumination
and other causes such as blurs and poor video quality also make the object detection task
challenging. To detect the object of interest, background subtraction (BS) is widely used
in many plant disease identification systems, and its detection rate largely depends on the
number of features used to suppress and isolate the foreground region and its sensitivity
toward image nonlinearity.
Methodology: A hybrid invariant texture and color gradient-based approach is pro-
posed to model the background for dynamic BS, and its performance is validated by
various real-time video captures covering different kinds of complex backgrounds and var-
ious illumination changes. Based on the experimental results, a simple multimodal feature
attribute, which includes several invariant texture measures and color attributes, yields
finite precision accuracy compared with other state-of-art detection methods. Experimen-
tal evaluation of two datasets shows that the new model achieves superior performance
over existing results in spectral-domain disease identification model.
5G assistance: After successful identification of tobacco plant and its analysis, the final
results are stored in a cloud-assisted server as a database that allows all kinds of 5G services
such as IoT and edge computing terminals for data access with valid authentication for
detailed analysis and references.

Keywords: background subtraction (BS), local binary pattern (LBP), tobacco plant,
texture, Gaussian mixture model (GMM), illumination changes, plant disease identifica-
tion system.
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1. Introduction

In agriculture, plant diseases have always been a primary concern since they
affect overall crop yields and quality. The symptoms are identified based on mi-
nor to severe damage of plant leaves and impact heavily on the planted crops.
In order to prevent agricultural economy losses, various methodologies are es-
tablished to detect the disease. However, precise identification of plant diseases
requires the most appropriate analysis and decision-making process. Moreover,
it is essential to process large amount of data to get superior results in detect-
ing plant disease. Currently available sample image processing-based models do
not contain enough information for improved decisions. A comprehensive dataset
must contain a video sequence.

Progression in vision analyses and the significant advancement in artificial in-
telligence offer new solutions to precision agriculture. However, when examining
the large sets of crops, one of the major challenges in the automatic detection of
any plant disease based on the symptoms and shape variations of the plant leaf is
the vision analysis that includes moving object detection and segmentation. The
process of segmenting a moving object into a foreground region (plant region)
and background scenes (static region) is called the BS process. The two most
commonly used techniques for BS are statistical parametric and nonparametric-
based techniques. In the parametric approach, by modeling the pixel intensity
changes, one can identify the background using some normal distribution [1].
In nonparametric-based approach, the background model is estimated based on
pixel intensity variance independently [2] for each incoming frame. This latter
approach is able to detect the targets with higher sensitivity and also to adapt
faster to changes in the background process. It has metrics of low complexity
since simple modeling techniques are used for accurate background estimation.
However, the metrics suffer from accuracy loss caused by background changes,
which leads to some uncertainty in accurate estimation.

In recent years, texture models have gained momentum in vision applications
for high accuracy image tasks.

2. Related works

Plant disease identification based on real-time visual inspection is a diffi-
cult task to accomplish on a regular basis over large field area, and it is also
time-consuming and expensive. To mitigate this problem, several research works
introduced vision-based automated models with improved detection accuracy.
Classical vision applications require the most effective foreground separation for
analyzing the object of interest. The complex background is another issue while
studying the real-time captured dataset in an open outdoor environment. In ad-
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dition to this, computational complexity and memory space requirements of var-
ious existing vision-based processing models are not applicable for vision-based
plant disease identification systems.

Many of the previous works were devoted only to one or more invariant mod-
els that are less sensitive to any moving foreground object as proposed by [3] or
appropriate quantitative evaluation to estimate motion events [4]. To reduce the
cost of complex arithmetic, simple texture models were investigated in previous
works. In [5], a LBP and CLBP approach with sign and magnitude components
was employed for texture classification. An image local texture features were ex-
tracted by using CLBP_C, CLPB_S and CLPB_M. In [6] codebook algorithm
was used based on edges and texture analysis to verify foreground pixels. In some
cases, edge and spatial intensity measures were used to explore the color infor-
mation and its discriminations with the background. In [7], spatial-color binary
patterns were used to model the dynamic backgrounds.

Texture models always show significant improvement in accuracy as com-
pared to motion models. In [8], the authors reduced the impact of shadows by
incorporating the intensity changes of one-pixel over-illumination changes using
a photometric invariant model. However, for outdoor videos to reduce the vari-
ance and improve the accurate computation of dynamic events the multi-model
approaches are always required.

To the best of our knowledge, all previous methodologies proposed for templa-
te-based approaches in dynamic background models have neglected the effect
of variations caused by boundaries that occurred only in illuminated field site
videos. Whereas, the multimodal approaches using motion events failed over
blurred scenes. The main drawback of template-based dynamic BS is its com-
plex arithmetic in comparison with the motion model counterparts. In [9], scale-
invariant local texture patterns for appearance information and associated spa-
tial exploration of objects of interest at each input sequence were developed.
Andrushia and Patricia [10] introduced Gaussian mixture-based BS to detect
and classify diseases in grape leaves. Multimodal features, including color, the
gray level co-occurrence matrix (GLCM) texture and shape attributes, were ex-
tracted for disease abnormalities, Furthermore, an artificial bee colony model
was used for feature sub-set evaluation to generate an optimal feature set.

Kumar et al. [11] proposed a Gaussian mixture model-based template gene-
ration to segment the plant leaves as foregrounds and used an artificial bee
colony-based fuzzy C means model for the identification procedure. To improve
the detection rate, a singular value decomposition (SVD) was incorporated to
reduce the dimensions of multiple feature vectors used for final classification.
In [12], the hyper spectral imaging and a wavelength selection strategy were
used to identify and examine the virus-infected area in a tobacco plant. In [13],
for dynamic background subtraction for every frame instant, a unified approach
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color category analysis on categorical entropy was employed, although it is unre-
liable for shape and scale variations. In [14], the spatial temporal classification is
modeled using the least number of temporal features with spatial features, and
its sensitiveness toward dynamic background changes is also very low, which im-
proves the detection rate significantly. In these cases, background model contains
unique features to subtract background scenes. In [15], a spatiotemporal model
was proposed to segment dynamic background and moving objects. However, the
dynamic nature of outdoor videos causes large variance over different classes of
background moving objects. In [16], the AI-based deep learning models used for
object detection and localization of objects for 5G networks are presented. In [17],
a Deep Neural Network (DNN)-based offline template model is used for the real-
world 5G multi-access edge computing testbed to meet requirements such as
improved detection accuracy with ultra-low latency for object detection. In [18],
the 5G technology enabled intelligent video surveillance applications are used to
detect human object detection by using cascaded object detection method.

3. Dynamic background model

In general, for improved object detection rate, the template models used
for detecting the foreground should comprise more than one feature attribute
for subtracting the background and foreground for plant detection, as shown
in Fig. 1. The proposed plant detection frameworks include a hierarchical stage
which includes: feature extraction, template modeling and BS, as shown in Fig. 2.

Fig. 1. Input sample frame from tobacco plant.

Frame

LBP binary
pattern

Rotational
invariant pattern

Uniform texture
pattern

Appearance information modeling
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Fig. 2. Block diagram of the BS model.
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Initially, a template is formulated by extracting feature attributes from incoming
frames and forms the template used as reference model to isolate foreground
regions. With the inclusion of multimodal feature attributes, the issues related
to illumination changes and associated spatial variations are suppressed.

The motivation for the foreground detection (FD) technique is that the tex-
ture feature and the color feature details of a frame: mean, standard deviation
and energy measures, as shown in Fig. 3, are also used to model the background.
The FD technique is used to model the background using rotational invariant
and uniform texture features. Along with this feature, color features are also
used to handle the illumination changes (sudden/gradual). After modeling the
pixels in the background, the frame differencing method is applied to segregate
between the stationary and nonstationary pixels. Optimal number of features
is used to model the background, which reduces the overall computational time
and associated computational complexity, which can support a wide range of
outdoor video types.

a) b) c)

Fig. 3. Color attributes model: a) mean measure, b) ST measure, c) energy measure.

The above procedure for dynamic BS is summarized as follows:

Algorithm: Background subtraction

TL – threshold level,
CG – color gradient computation,
MB – macroblock,
CLBP – computation of local binary pattern,
CRIT – computation of rotational invariant texture,
CUT – computation of uniform texture,
SF – separated foreground.
FD (Input frame, foreground pixel)
//Input – Sequence of crop field video frames
//Output – Separated foreground (Plant region)
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Step 1: set sigma as TL1 // variance value
set minimum number of transitions as TL2 // uniform texture

margin value
set margin for invariant texture as TL3 // rotational texture

margin value
Step 2: for i← 1 to height of frame do

for j ← 1 to width of frame do
for m = 1:3
P1(i, j) = CG(i, j,m)

end
end

end
B = macroblock conversion (for each frame) // 3× 3 matrix
TM = CLBP(B);
P2 = RITM (TM );
P3 = CUT (TM );

Step 3: for i← 1 to height of frame do
for j ← 1 to width of frame do

if TL1(i, j) ≤ P1(i, j) && TL2(i, j) ≤ P2(i, j)
&& TL3(i, j) ≤ P3(i, j) then

SF (i, j) = 0 // background region
else

SF (i, j) = 1 // foreground region
end

end
end.

The proposed system is tested for different datasets in terms of videos cap-
turing tobacco plant and successfully stored using a cloud-assisted server for
5G services. Nkenyereye et al. [19] proposed a new protocol for a cloud-assisted
video reporting service in 5G enabled networks. Furthermore, the hybrid method
is used for modeling BS. For modeling the moving objects, an extended cen-
ter symmetric local binary pattern (XCS-LBP) approach was developed. How-
ever, it has the limitation of poor sensitiveness toward dynamic background
with various complex backgrounds, which reduces the detection rate. The ob-
ject detection framework proposed in [20] used highly complex outdoor CCTV
video sequences and introduced CNNs to accomplish the classification. In or-
der to reduce the computational complexity and improve the convergence rate,
an optimal BS model is used to isolate the object of interest from input video
sequences.
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3.1. Texture model

To reduce the sensitivity of the proposed BS process to different scale vari-
ations, the template is modeled by using highly discriminate texture features
(rotational invariant and uniform) using local binary pattern (LBP), as shown
in Fig. 4. Initially, LBP texture classification is done over each input macroblock
of size 3× 3 using successive swapping and sequential comparison. Based on true
and false rates, texture patterns are obtained using hierarchical bit concatena-
tion. In this study, the sliding widowing length is fixed for the entire texture
classification process. Moreover, to explore the uniformity of extracted LBP
patterns, the successive modulo-2 operation is carried and based on bit tran-
sition input, and LBP patterns are classified, which shows improved invariance
to scale rotational changes at the input. The rotational and scale invariant pat-
terns extracted from each incoming frame are successively used, and templates
are updated periodically at regular time intervals for improved object detection
rate.

3.1.1. GLCM feature extraction and relevant texture bound analysis. There
are numerous ways to explore the spatial correlation level of the input object of
interest, which includes the successive intensity of one pixel with its surround-
ings. In most cases, GLCM is widely used as the most predominant texture
feature extraction in many image processing applications due to its inherent in-
variant characteristics. The texture analyses include the following three different
statistical characteristics of the spatial relationship:

• orientation texture features (0◦, 45◦, 90◦, 135◦),
• texture displacement measurement,
• statistics texture features.
In this study, 20 GLCM feature attributes are used to explore the extract

texture features, as shown in Table 1, to represent the visual perceptions of all
three texture classified patterns of tobacco plants as given below:

contrast =

M−1∑
l,m=0

(Xlm −m)2,

correlation =
n∑

l,m=0

Xlm
(1− µ)(m− µ)

σ2
,

energy =

M−1∑
l,m=0

(Xlm)2,

homogeneity =

M−1∑
l,m=0

Xlm

1 + (l −m)2
,
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Table 1. Texture retention level analysis over different classifications
using GLCM feature attributes.

LBP GLCM feature set

Rotational
invariant LBP GLCM

feature set

Uniform LBP GLCM
feature set
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entropy =
M−1∑
l,m=0

− ln(Xlm)Xlm,

shade = sgn(Q)|Q|1/3,

prominence feature = sgn(R)|R|1/3,

autocorrelation =
M−1∑
l,m=0

lm(Xlm),

dissimilarity =
M−1∑
l,m=0

|l −m|(Xlm),

cluster shade =
M−1∑
l,m=0

(l +m− µ1− µ2)3(Xlm),

cluster prominence =
M−1∑
l,m=0

(l +m− µ1− µ2)4(Xlm),

maximum probability = max {Xlm} ∀l,m,

inverse difference =
M−1∑
l,m=0

Clm
1 + (l −m)

,

inverse difference moment =
M−1∑
l,m=0

Clm
1 + (l −m)2

,

sum of square =

M−1∑
l,m=0

Xlm(l − µ)2,

sum entropy = −
M−1∑
l,m=0

Xlm log(Xlm),

inverse measure of correlation =
HLM −HLM1

max(HL,HM)
,

where Xlm – components of the normalized symmetrical GLCM, L – dynamic
range of gray scale image, µ – mean formulated as follows:

µ1 =

M−1∑
l,m=0

lm(Xlm),

µl =

M−1∑
l,m=0

l(Xlm),
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µm =
M−1∑
l,m=0

m(Xlm),

HLM = −
M−1∑
l,m=0

Xlm log(Xlm),

σ2 denotes the variance level formulated as follows:

σ2 =

M−1∑
l,m=0

Xlm(l − µ)2,

σl =
M−1∑
l,m=0

(l − µ1)2Xlm,

σm =
M−1∑
l,m=0

(m− µm)2Xlm,

Clm =

M−1∑
l,m=0

Xlm∑
Xlm

,

A =
M−1∑
l,m=0

(l +m− 2µµ3)Xlm)

σ3(
√

2(l + c))3
,

B =

M−1∑
l,m=0

(l +m− 2µµ4)Xlm)

4σ4(l + c)2
,

C denotes the correlation measure.

3.2. Color gradient model

The color gradients of each pixel from all primary channels (R, G and B) are
computed to measure the spatial variations of the region of interest. Here both
X and Y coordinates are used to find the orientation of plant leaf edges in accor-
dance with its position, which can explore the object types more appropriately.
The computation of gradient vectors for formulating the background model of-
fers optimal ways to discriminate the foreground and background regions of each
incoming frame, as shown in Figs. 4 and 5. The nonlinear variations at the input
frame sequence significantly influence the intensity values at each color channel
but give less impact over gradient vectors, which include both magnitude and
directions as shown below:

∆M = F (∆Ri,∆Gi,∆Bi),
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where i ∈ (1, n), where n is a number of coordinates. Here (x, y) coordinates
are used for gradient. The estimated resultant magnitude of final gradient ∆M
at each coordinate (x, y):

∆M(x, y) =

√
∆R1

2 + ∆R2
2 + ∆G1

2 + ∆G2
2 + ∆B1

2 + ∆B2
2.

a) b) c)

Fig. 4. Texture classification used for background modeling: a) LBP output, b) rotational
invariant texture, c) uniform texture.

a) b)

Fig. 5. Color gradient output: a) input plant, b) color gradient.

4. Review of experimental results

This FD method is tested over outdoor plant videos and various measures
are evaluated to validate the performance metrics. The video dataset is col-
lected from tobacco plantation site and various parameters of video dataset are
as shown in Table 2. The performance validation considers tobacco videos of
various environment conditions and the end results are compared with another
classification model in order to show the superior detection rate and associated
background suppression levels across different types of the video datasets. The
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Table 2. Video parameters considered for performance validation.

Model Parameters
The total number of videos tested 24
Video category Set1: High-density plant rate

Set2: Poorly illuminated condition
Video type AVI format
Frame size 320× 240
Number of GLCM feature attributes used 20
Color attributes used 3

performance comparison includes measures such as detection recall, precision,
F-score and accuracy. A comparison is made accordingly.

4.1. Analysis of precision adjustments

To validate the performance of the tobacco plant disease identification and
classification system, the results of FD are compared to find the best effective
multimodal feature attribute-based BS method and to prove the robustness of
the proposed model over BS using statistically independent gradient values with
finite spatial information. The classification end results prove that the proposed
hybrid texture-color gradient model shows improved detection accuracy in BS
rate over the existing method. The detailed analysis and end results are shown
in Table 3. The performance metrics of the proposed hierarchical spatial domain
analysis for tobacco disease identification are also compared with the state-of-
the-art spectral-domain disease identification model introduced by Gu et al. [12].
Due to a detailed exploration of texture abnormalities, the proposed texture-
bound analysis model outperforms the existing method introduced by Gu et al.
with improved classification accuracy, as shown in Table 4.

Table 3. Performance measures of the proposed FD system.

Measures
Image sets

Set1: High-density plant rate Set2: Poorly illuminated videos
Recall 0.9722 0.9213

Precision 0.9548 0.3939
F-measure 0.8408 0.9118
Accuracy 0.9549 0.9131

Table 4. Comparative analysis with another state-of-art model.

Method used Accuracy [%]
Spectral-domain analysis with wavelength selection model (Gu et al. [12]) 85.20

Proposed spatial domain analysis 91.31
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5. Conclusion

In this paper, we have explored the efficiency of hybrid texture and color
gradient for a dynamic BS system. Statistical texture and color gradients were
combined to identify the background and subtract it from foreground regions.
This method was examined on several tobacco plant videos with dynamic back-
ground variation and real-time outdoor fields, and the performance validation in
terms of detection accuracy and its consistency toward different nonlinear video
dynamics confirms the robustness of the proposed plant detection system. The
incorporation of multimodal feature attributes during template modeling com-
prising uniform and rotational invariant textures and color gradients, showed
that an optimal background model can ensure dynamic BS efficiently with im-
proved robustness and reliability.
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