PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Określenie wieku kozy (Cobitis taenia) i kozy złotawej (Sabanejewia aurata) z wykorzystaniem niektórych struktur twardych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Age Validation of Spined Loach (Cobitis taenia) and Golden Loach (Sabanejewia aurata) Using Some Calcinated Structures
Języki publikacji
PL
Abstrakty
EN
Age is one of the most important life history variables of fish used to estimate growth rate, mortality rate and production. Age determining is usually carried out by analyzing any of several calcified structures, such as scales, otoliths (more frequently) or fin rays (rather seldom). Scales are easy to collect and this is the reason why this structure has been widely used, but for several reasons annuli may be ambiguous to discern on scales, especially in the loaches. The material was collected in May 2010 in the Pilica River. A total of 29 fish individuals, including 16 spined loach and 13 golden loach, were examined. The range of total length (TL) of the fishes in the sample studied was 43–102 mm in the former and 35 do 70 mm in the latter species, respectively. The precision of ageing using the cross-sections of dorsal, caudal, anal, pectoral and ventral fins rays were compared with age determination on the basis of otoliths. The analysis of the annuli of the investigated structures revealed that individuals aged 2 to 5 years (golden loach) and aged 3 to 7 years (spined loach) occurred in the material (Table 1 and 2, respectively). The obtained results indicate that in natural water bodies older individuals than formerly presumed may occur. Microscopic slides of the cross sections of otoliths and fins are most reliable for ageing such structures. The anal fin (A) it the most reliable structure for ageing, i.e. the age obtained from the fin is least divergent from the age obtained from the otolith. While planning the investigations of the age structure of populations it is necessary to establish the periods of sampling in a way that will be most congruent with the period of annuli formation.
Rocznik
Strony
1041--1052
Opis fizyczny
Bibliogr. 34 poz., tab., rys.
Twórcy
  • Politechnika Koszalińska
  • Uniwersytet Łódzki
autor
  • Uniwersytet Łódzki
autor
  • Politechnika Koszalińska
  • Uniwersytet Łódzki
Bibliografia
  • 1. Boroń A., Kotusz J., Przybylski M.: Koza, koza złotawa, piskorz, śliz. Wydawnictwo Instytutu Rybactwa Śródlądowego w Olsztynie, 5–107 (2002).
  • 2. Boroń A., Jeleń I., Juchno D., Przybylski M., Borzuchowska E.: Age and growth of the karyologically identified spined loach Cobitis taenia (Teleostei, Cobitidae) from a diploid population. Folia Zool. 57 (1–2), 155–161 (2008).
  • 3. Braaten P.J., Doeringsfeld M.R., Guy C.S.: Comparison of age and growth estimates for river carpsuckers using scales and dorsal fin ray sections. North American Journal of Fisheries Management. 19, 786–792 (1999).
  • 4. Campana S.E.: How reliable are growth back-calculation based on otoliths? Can. J. Fish. Aquatic Sci. 47, 2219–2227 (1992).
  • 5. Campana S.E.: Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology. 59, 197–242 (2001).
  • 6. Campana S.E.: Otolith science entering the 21st century. Marine and Freshwater Research. 56, 485–495 (2005).
  • 7. Casselman J.M.: Growth and relative size of calcified structures of fish. Transactions of the American Fisheries Society. 119, 673–688 (1990).
  • 8. Checkley Jr. D.M., Dickson A.G., Takahashi M., Radich A.J., Esienkolb N., Asch R.: Elevated CO2 enhances otolith growth in young fish. Science vol. 324. 1683 (2009).
  • 9. Clarke L.M., Friedland K.D.: Influence of growth and temperature on strontium deposition in the otoliths of Atlantic salmon. Journal of Fish Biology. 65, 744–759 (2004).
  • 10. Ferreira L.C.G., Beamish R.J., Youson J.H.: Macroscopic structure of the fin-rays and their annuli in pectoral and pelvic fins of Chinook salmon, Oncorhynchus tshawytscha. Journal of Morphology. 239, 297–320 (1999).
  • 11. Fukuda N., Kuroki M., Schinoda A., Yamada Y., Okamura A., Aoyama J., Tsukamoto K.: Influence of water temperature and feeding regime on otolith growth in Anguilla japonica Glass eels and elvers: does otolith cease at low temperatures? Journal of Fish Biology. 74, 1915–1933 (2009).
  • 12. Gabriel J., Lombarte A., Morales-Nin B.: Variability of the sulcus acusticus in the sagittal otolith of the genus Merluccius (Merlucciidae). Special Issue: 2nd International Symposium On Fish Otolith Research &Application, Bergen, Norway, 20–25 June 1998. In: Fisheries Research. 46, 1(3), 5–13 (2000).
  • 13. Halden N.M., Mejia S.R., Babaluk J.A., Reist J.D., Kristofferson A.H., Campbell J.L., Teesdale W.J.: Oscillatory zine distribution in Arctic char (Salvelinus alpines) otoliths: the results of biology or environment. Fisheries Research 46, 289–298 (2000).
  • 14. Harka Á., Györe K., Lengyel P.: Growth of the golden spined loach, Sabanejewia aurata (Filippi, 1865) in River Tisza (Eastern Hungary). TISCIA 33, 45–49 (2002).
  • 15. Heese T.: Optymalizacja metody określania tempa wzrostu ryb za pomocą odczytów wstecznych. Monografia Wydziału Inżynierii Lądowej i Sanitarnej. Nr 42, 155 (1992).
  • 16. Hubert W.A., Baxter G.T., Harrington M.: Comparison of age determination based on scales, otoliths, and fin rays for cutthroat trout from Yellowstone Lake. Northwest Science 61, 32–36 (1987).
  • 17. Juchno D., Boroń A.: Comparative histology of the testes of the spined loach Cobitis taenia L. and natural allotetraploids of Cobitis (Pisces, Cobitidae). Hydrobiologia. 573, 45–53 (2006).
  • 18. Kostrzewa J., Przybylski M., Marszał L., Valladolid M.: Growth and reproductive biology of Loaches Cobitis sp. In Lake Lucień, Poland. Folia biologica 51, 179–182 (2003).
  • 19. Lampart-Kałużniacka M., Wojcieszonek A., Pikuła K.: Ocena stanu ekologicznego wód rzeki Regi na odcinku w obszarze miasta Gryfice. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 14, 428–437 (2012).
  • 20. Mann H.K., Steinmetz B.: On the accuracy of age-determination using scales from rudd, Scavdinius evythvophthalmus (L.), of known age. Journal of Fish Biology. 26, 621–628 (1985).
  • 21. Melvin G.D., Campana S.E.: High resolution bomb Datong for testing the accuracy of age interpretations for a short-lived pelagic fish the Atlantic herring. Environ. Biol. Fish. 89, 297–311 (2010).
  • 22. Mills K.H., Chalanchuk S.M.: The fin-ray method of aging lake whitefish. Ann. Zool. Frnnici 41, 215–223 (2004).
  • 23. Newman S.J., Dunk I.J.: Growth, Age Validation, Mortality, and other Population Characteristics of the Red Emperor Snapper, Lutjanus sebae (Cuvier, 1828), off the Kimberley Coast of North-Western Australia. Estuarine, Coastal and Shelf Science Volume 55, Issue 1, 67–80 (2002).
  • 24. Quist M.C., Jackson Z.J., Bower M.R., Hubert W.A.: Precision of Hard Structures Used to Estimate Age of Riverine. North American Journal of Fisheries Management 27, 643–649 (2007).
  • 25. Panfili J., de Pontual H., Troadec H., Wright P.J.: Manual of fish sclerochronology. Ifemer, XLC Le Relecq Kerhuon, France. 463 (2002).
  • 26. Robotham P.W.J.: Age, growth and reproduction of a population of spined loach, Cobitis taenia (L.). Hydrobiologia 85, 129–136 (1981).
  • 27. Secor D.H., Dean J.M., Laban E.H.: Manual for otolith and removal and preparation for microstructural examination. Electric Power Research Institute and the Belle W. Baruch Institute for Marine Biology and Coastal Research. No.1, 85 (1991).
  • 28. Sikstrom C.B.: Otolith, pectoral fin ray, and scale age-determinations for Arctic grayling. The Progressive Fish-Culturist. 45, 220–223 (1983).
  • 29. Sollner Ch., Burghammer M., Busch-Nentwich E., Berger J., Schwarz H., Riekel Ch., NicolsonT.: Control of Crystal Size and Lattice Formation by Starmaker in Otolith Biomineralization. Sciense Vol. 302, 282–286 (2003).
  • 30. Tarkan A.S., Copp G.H., Zięba G., Godard M.J. & Cucherousset J.: Growth and reproduction of threatened native crucian carp Carassius carassius in small ponds of Epping Forest, south-east England. Aquatic Conservation: Marine and Freshwater Ecosystems. 19, 797–805 (2009).
  • 31. Tohse H., Saruwatari K., Kogure T., Nagasawa H., Takagi Y.: Control of Polymorphism and Morphology of Calcium Carbonate Crystals by a Matrix Protein Aggregate in Fish Otoliths. Crystal Growth & Design, 9, 4897–4901 (2009).
  • 32. Williamson C.J., Macdonald J.S.: The Use of Three Ageing Techniques to Estimate the Growth Rates for Rainbow Trout (Oncorhynchus mykiss) and Bull Trout (Salvelinus confluentus) from Selected Locations near Takla Lake. B. C. Canadian Technical Report of Fisheries and Aquatic Sciences. 2490, 20 (1997).
  • 33. Zanella D., Mrakovčić M., Mustafić P., Ćaleta M., Buj I., Marčić Z., Zrnčić S., Razlog-Grlica J.: Age and growth of Sabanejewia balcanica in the Rijeka River, central Croatia. Folia Zool. 57(1–2), 162–167 (2008).
  • 34. Zymonas N.D., McMahon T.E.: Comparison of pelvic fin rays, scales and otoliths for estimating age and growth of bull trout, Salvelinus confluentus. Fisheries Management and Ecology, 16, 155–164 (2009)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc6ab693-dde6-4f8c-ba64-d9b1ac239baa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.