PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lab-on-a-chip microdevice with contactless conductivity detector

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes a new contactless conductivity detector, whose electrodes are constructed of microchannels filled with solution of KCl - called pseudoelectrodes. The lab-on-a-chip microdevice was fabricated in poly(dimethylsiloxane) PDMS, using a moulding technique. The mould was made from a dry negative photoresist with a thickness of 50 µm. During the tests, the dimension and arrangement of pseudoelectrodes' microchannels were evaluated. The analyte was pumped into the microchannel using a syringe pump with a flow rate of 50 µL/min. Reproducible changes of the signal were obtained.
Rocznik
Strony
299--306
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Chemistry, Institute of Biotechnology, Department of Microbioanalytics, Noakowskiego 3, 00-664 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemistry, Institute of Biotechnology, Department of Microbioanalytics, Noakowskiego 3, 00-664 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemistry, Institute of Biotechnology, Department of Microbioanalytics, Noakowskiego 3, 00-664 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemistry, Institute of Biotechnology, Department of Microbioanalytics, Noakowskiego 3, 00-664 Warsaw, Poland
Bibliografia
  • [1] Reyes, D.R., Iossifidis, D., Auroux, P.-A., Manz, A., (2002) Micro Total Analysis Systems. 1. Introduction, theory and technology, Analytical Chemistry, 74, 2623-2636
  • [2] Auroux, P.-A., Iossifidis, D., Reyes, D.R., Manz, A., (2002) Micro Total Analysis Systems. 2. Analytical Standard Operations and Applications, Analytical Chemistry, 74, 2637-2652
  • [3] Jedrych, E.; Flis, S.; Sofinska, K.; Jastrzebski, Z.; Chudy, M.; Brzozka, Z.; (2011) Evaluation of cytotoxic effects of 5-fluorourcil on human carcinoma cells in microfluidic system, Sens Actuators B, , 160, 1544-1551
  • [4] Jedrych E., Pawlicka Z., Chudy M., Dybko A., Brzozka Z., (2011), „Evaluation of photodynamic therapy (PDT) procedures using microfluidic system” Analytica Chimica Acta, 683, 149-155
  • [5] Ziolkowska, K., Jedrych, E., Kwapiszewski, R., Lopacinska, J., Skolimowski, M., Chudy M., (2010), PDMS/glass microfluidic cell culture system for cytotoxicity tests and cells passage, Sensors and Actuators B 145, 533-542
  • [6] Therry, S.C., „A gas chromatography system fabricated on a silicon wafer using circuit technology", Ph.D. dissertation, Stanford University CA. Alsoo, Stanford Electronics Laboratories Tech. Rep. 4603-1, 1975
  • [7] Stjerström, M., Roeraade, J., (1998), Method for fabrication microfluidic system in glass, Journal of Micromechanics and Microengineering, 8, 33-38
  • [8] Lin, Ch.-H., Lee, G.-B., Lin, Y.-H., Chang, G.-L., (2001), A fast prototyping process for fabrication of microfluidic systems on soda-lime glass, Journal of Micromechanics and Microengineering, 11, 726-732
  • [9] Harrison, D.J., Fluri, K., Seiler, K., Fan, Z.H., Effenhauser, C.S., Manz, A., (1993), Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip, Science, 261, 895-897
  • [10] Harrison, D.J.;Glavina, P.G.; Manz, A.; (1993), Sens. Actuators B, 10, 107-116
  • [11] Becker, H., Heim, U., (2000) Hot embossing as a method for the fabrication of polymer high aspect ratio structures, Sensors and Actuators 83, 130-135
  • [12] Snakenborg, D., Klank, H., Kutter, J.P. Journal of Micromechanics and Microengineering, Microstructure fabrication with a CO2 laser system, 14, 2004, 182-189
  • [13] Roberts, M.A., Rossier, J.S., Bercier, P., Girault, H., (1997), UV laser machined polymer substrates for the development of microdiagnosticsystems, Analytical Chemistry, 69, 2035-2042
  • [14] Weber, G.; Johnck, M, Siepe, D.; Neyer, A., Hergenroder, R.; (2000) Capillary electrophoresis with direct and contactless conductivity detection on a polymer microchip. Proceedings of Micro Total Analysis Systems, 383-386
  • [15] Liu, Y., Ganser, D., Schneider, A., Liu, R., Grodzinski, P., Kroutchinina; N., (2001) Microfabricated Polycarbonate CE Devices for DNA Analysis, Analytical Chemistry, 73, 4196-4201
  • [16] Brown, L., Koerner, T., Horton, J. H., Oleschuk, R. D., (2006) Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents, Lab on a Chip, 6, 66-73
  • [17] Nayak, N.C., Yue, C.Y., Lam, Y.C., Tan, Y.L., (2009) Thermal bonding of PMMA: Effect of polymer molecular weight, Microsystem Technologies, 16, 487-491
  • [18] Zhu, X., Liu, G., Guo, Y., Tian, Y., (2007), Study of PMMA thermal bonding, Microsystem Technologies, 13, 403-407
  • [19] Drew, P.J., Watkins, A., McGregor, A.D., Kiernan, M.N., Clement, M., (2001), The effects of temperature and time on thermal bond strength in tendons, Lasers in Medical Science, 16, 291-298
  • [20] Duffy, D.C., McDonald, C., Schueller, O.J.A., Whiteside, G.M., (1998) Rapid prototyping of microfluidic system in poly(dimethylsiloxane), Analytical Chemistry, 70, 4974-4984
  • [21] Grabowska, I.; Stadnik, D.; Chudy, M.; Dybko, A., Brzozka, Z.; (2007) Architecture and method of fabrication PDMS system for uric acid determination, Sensors and Actuators B, 121, 445-451
  • [22] Kwok, Y.C., Jeffery, N.T., Manz, A., (2001), Velocity measurement of particles flowing in a microfluidic chip using shah convolution fourier transform detection, Analytical Chemistry, 73, 1748-1753
  • [23] Pumera, M.; (2008) Trends in analysis of explosives by microchip electrophoresis and conventional CE; Electrophoresis, 29, 269-273
  • [24] Auroux, P.-A., Iossifidis, D., Reyes, D.R., Manz, A., (2002) Micro Total Analysis Systems. 2. Analytical Standard Operations and Applications, Analytical Chemistry, 74, 2637-2652
  • [25] Manz, A., Graber, N., Widmer, H.M., (1990) Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sensors and Actuators B, 1, 244-248
  • [26] Guijt, R. M., Baltussen, E., van der Steen, G., Frank, H., Billiet, H., Schalkhammer, T., Laugere, F., Vellenkoop, M., Berthold, A., Sarro, L., van Dedem, G. W. K., (2001), Capillary electrophoresis with on- chip four-electrode capacitively coupled conductivity detection for application in bioanalysis , Electrophoresis, 22, 2537-2541
  • [27] Tůma, P., Opekar, F., Jelínek, I., (2001), A Contactless Conductometric Detector with Easily Exchangeable Capillary for Capillary Electrophoresis, Electroanalysis 13, 989-992
  • [28] Lichtenberg, J., de Rooij, N.F., Verpoorte, E., (2002), A microchip electrophoresis system with integrated in-plane electrodes for contactless conductivity detection Electrophoresis 23, 3769-3780
  • [29] A.J. Zemann, E. Schnell, D. Volgger, G.K. Bonn, (1998) Contactless Conductivity Detection for Capillary Electrophoresis, Analytical Chemistry, 70, 563-567.
  • [30] Fracassi da Silva, J.A., Guzman, N., do Lago, C.L., Contactless conductivity detection for capillary electrophoresis. Hardware improvements and optimization of the input-signal amplitude and frequency., J.Chromatogr. A, 2001, 942, 249-258.
  • [31] Juchniewicz, M., Chudy, M., Brzozka, Z., Dybko, A., (2009), Bonging-less (B-less) fabrication of polymeric microsystems, Microfluid Nanofluid, 7, 733-737.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc680f83-d4df-479f-8ea1-30e936f9fd33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.